Spaces:
Runtime error
Runtime error
import random | |
import pandas as pd | |
import os | |
class Model: | |
""" | |
Class containing the info of a model. | |
:param name: Name of the model | |
:param elo: Elo rating of the model | |
:param games_played: Number of games played by the model (useful if we implement sigma uncertainty) | |
""" | |
def __init__(self, name, elo, env): | |
self.name = name | |
self.elo = elo | |
self.games_played = 0 | |
self.env = env | |
class Matchmaking: | |
""" | |
Class managing the matchmaking between the models. | |
:param models: List of models | |
:param queue: Temporary list of models used for the matching process | |
:param k: Dev coefficient | |
:param max_diff: Maximum difference considered between two models' elo | |
:param matches: Dictionary containing the match history (to later upload as CSV) | |
""" | |
def __init__(self): | |
self.models = [] | |
self.queue = [] | |
self.start_elo = 1200 | |
self.k = 20 | |
self.max_diff = 500 | |
self.matches = pd.DataFrame() | |
def read_history(self): | |
""" Read the match history from the CSV files, concat the Dataframes and sort them by datetime. """ | |
path = "match_history" | |
files = os.listdir(path) | |
for file in files: | |
self.matches = pd.concat([self.matches, pd.read_csv(os.path.join(path, file))], ignore_index=True) | |
self.matches["datetime"] = pd.to_datetime(self.matches["datetime"], format="%Y-%m-%d %H:%M:%S.%f", errors="coerce") | |
self.matches = self.matches.dropna() | |
self.matches = self.matches.sort_values("datetime") | |
self.matches.reset_index(drop=True, inplace=True) | |
model_names = self.matches["model1"].unique() | |
self.models = [Model(name, self.start_elo, self.matches[self.matches["name"] == name].iloc[0]["env"]) for name in model_names] | |
def compute_elo(self): | |
""" Compute the elo for each model after each match. """ | |
for i, row in self.matches.iterrows(): | |
model1 = self.get_model(row["model1"]) | |
model2 = self.get_model(row["model2"]) | |
result = row["result"] | |
delta = model1.elo - model2.elo | |
win_probability = 1 / (1 + 10 ** (-delta / 500)) | |
model1.elo += self.k * (result - win_probability) | |
model2.elo -= self.k * (result - win_probability) | |
model1.games_played += 1 | |
model2.games_played += 1 | |
def save_elo_data(self): | |
""" Save the match history as a CSV file to the hub. """ | |
df = pd.DataFrame(columns=['name', 'elo']) | |
for model in self.models: | |
df = pd.concat([df, pd.DataFrame([[model.name, model.elo]], columns=['name', 'elo'])]) | |
df.to_csv('elo.csv', index=False) | |
def get_model(self, name): | |
""" Return the Model with the given name. """ | |
for model in self.models: | |
if model.name == name: | |
return model | |
return None | |