Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,333 Bytes
3aa0ca8 eebec00 a2e978b eebec00 3aa0ca8 f734c44 3aa0ca8 f734c44 bb8619e 3aa0ca8 eebec00 f734c44 eebec00 01e0de2 eebec00 01e0de2 eebec00 3aa0ca8 01e0de2 3aa0ca8 f734c44 01e0de2 bb8619e 9fd248b 01e0de2 f734c44 3aa0ca8 bb8619e 3aa0ca8 eebec00 3aa0ca8 802b807 bb8619e 3aa0ca8 eebec00 b6a0d59 eebec00 bb8619e f734c44 bb8619e eebec00 802b807 eebec00 3aa0ca8 bb8619e 3aa0ca8 bb8619e 3aa0ca8 eebec00 15417c3 eebec00 3aa0ca8 15417c3 802b807 15417c3 eebec00 3aa0ca8 e5bd30a 802b807 e5bd30a bb8619e e5bd30a 1a904df f734c44 3aa0ca8 eebec00 bb8619e eebec00 bb8619e eebec00 3aa0ca8 bb8619e eebec00 bb8619e 17c74fe bb8619e 17c74fe 3aa0ca8 f734c44 bb8619e 3aa0ca8 bb8619e 3aa0ca8 bb8619e 3aa0ca8 17c74fe 3aa0ca8 eebec00 3aa0ca8 802b807 bb8619e 3aa0ca8 ac91a8f 3aa0ca8 01e0de2 bb8619e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
import torch
import gradio as gr
from PIL import Image
import qrcode
from pathlib import Path
from multiprocessing import cpu_count
from diffusers import (
StableDiffusionPipeline,
StableDiffusionControlNetImg2ImgPipeline,
ControlNetModel,
DDIMScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
HeunDiscreteScheduler,
EulerDiscreteScheduler,
)
from PIL import Image
qrcode_generator = qrcode.QRCode(
version=1,
error_correction=qrcode.ERROR_CORRECT_H,
box_size=10,
border=4,
)
controlnet = ControlNetModel.from_pretrained(
"DionTimmer/controlnet_qrcode-control_v1p_sd15", torch_dtype=torch.float16
)
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=controlnet,
safety_checker=None,
torch_dtype=torch.float16,
).to("cuda")
pipe.enable_xformers_memory_efficient_attention()
sd_pipe = StableDiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1",
torch_dtype=torch.float16,
safety_checker=None,
)
sd_pipe.to("cuda")
sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe.enable_xformers_memory_efficient_attention()
def resize_for_condition_image(input_image: Image.Image, resolution: int):
input_image = input_image.convert("RGB")
W, H = input_image.size
k = float(resolution) / min(H, W)
H *= k
W *= k
H = int(round(H / 64.0)) * 64
W = int(round(W / 64.0)) * 64
img = input_image.resize((W, H), resample=Image.LANCZOS)
return img
SAMPLER_MAP = {
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
"DPM++ Karras": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True),
"Heun": lambda config: HeunDiscreteScheduler.from_config(config),
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
"DDIM": lambda config: DDIMScheduler.from_config(config),
"DEIS": lambda config: DEISMultistepScheduler.from_config(config),
}
def inference(
qr_code_content: str,
prompt: str,
negative_prompt: str,
guidance_scale: float = 10.0,
controlnet_conditioning_scale: float = 2.0,
strength: float = 0.8,
seed: int = -1,
init_image: Image.Image | None = None,
qrcode_image: Image.Image | None = None,
use_qr_code_as_init_image = True,
sampler = "DPM++ Karras SDE",
):
if prompt is None or prompt == "":
raise gr.Error("Prompt is required")
if qrcode_image is None and qr_code_content == "":
raise gr.Error("QR Code Image or QR Code Content is required")
pipe.scheduler = SAMPLER_MAP[sampler](pipe.scheduler.config)
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
if qr_code_content != "" or qrcode_image.size == (1, 1):
print("Generating QR Code from content")
qr = qrcode.QRCode(
version=1,
error_correction=qrcode.constants.ERROR_CORRECT_H,
box_size=10,
border=4,
)
qr.add_data(qr_code_content)
qr.make(fit=True)
qrcode_image = qr.make_image(fill_color="black", back_color="white")
qrcode_image = resize_for_condition_image(qrcode_image, 768)
else:
print("Using QR Code Image")
qrcode_image = resize_for_condition_image(qrcode_image, 768)
# hack due to gradio examples
if use_qr_code_as_init_image:
init_image = qrcode_image
elif init_image is None or init_image.size == (1, 1):
print("Generating random image from prompt using Stable Diffusion")
# generate image from prompt
out = sd_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
generator=generator,
num_inference_steps=25,
num_images_per_prompt=1,
) # type: ignore
init_image = out.images[0]
else:
print("Using provided init image")
init_image = resize_for_condition_image(init_image, 768)
out = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=qrcode_image,
control_image=qrcode_image, # type: ignore
width=768, # type: ignore
height=768, # type: ignore
guidance_scale=float(guidance_scale),
controlnet_conditioning_scale=float(controlnet_conditioning_scale), # type: ignore
generator=generator,
strength=float(strength),
num_inference_steps=40,
)
return out.images[0] # type: ignore
with gr.Blocks() as blocks:
gr.Markdown(
"""
# QR Code AI Art Generator
## 💡 How to generate beautiful QR codes
There are two modes to generate beautiful QR codes:
1. **Blend-in mode**. Use the QR code image as the initial image **and** the control image.
When using the QR code as both the init and control image, you can get QR Codes that blend in **very** naturally with your provided prompt.
The strength parameter defines how much noise is added to your QR code and the noisy QR code is then guided towards both your prompt and the QR code image via Controlnet.
Make sure to leave the radio *Use QR code as init image* checked and use a high strength value (between 0.8 and 0.95) and choose a lower conditioning scale (between 0.7 and 1.3).
This mode arguably achieves the asthetically most appealing images, but also requires more tuning of the controlnet conditioning scale and the strength value. If the generated image
looks way to much like the original QR code, make sure to gently increase the *strength* value and reduce the *conditioning* scale. Also check out the examples below.
2. **Condition-only mode**. Use the QR code image **only** as the control image and denoise from a provided initial image.
When providing an initial image or letting SD 2.1 generate the initial image, you have much more freedom to decide how the generated QR code can look like depending on your provided image.
This mode allows you to stongly steer the generated QR code into a style, landscape, motive that you provided before-hand. This mode tends to generate QR codes that
are less *"blend-in"* with the QR code itself. Make sure to choose high controlnet conditioning scales between 2.0 and 3.0 and lower strength values between 0.5 and 0.7. Also check examples below.
model: https://huggingface.co/DionTimmer/controlnet_qrcode-control_v1p_sd15
<a href="https://huggingface.co/spaces/huggingface-projects/QR-code-AI-art-generator?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> for no queue on your own hardware.</p>
"""
)
with gr.Row():
with gr.Column():
qr_code_content = gr.Textbox(
label="QR Code Content",
info="QR Code Content or URL",
value="",
)
with gr.Accordion(label="QR Code Image (Optional)", open=False):
qr_code_image = gr.Image(
label="QR Code Image (Optional). Leave blank to automatically generate QR code",
type="pil",
)
prompt = gr.Textbox(
label="Prompt",
info="Prompt that guides the generation towards",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="ugly, disfigured, low quality, blurry, nsfw",
)
use_qr_code_as_init_image = gr.Checkbox(label="Use QR code as init image", value=True, interactive=True, info="Whether init image should be QR code. Unclick to pass init image or generate init image with Stable Diffusion 2.1")
with gr.Accordion(label="Init Images (Optional)", open=False, visible=False) as init_image_acc:
init_image = gr.Image(label="Init Image (Optional). Leave blank to generate image with SD 2.1", type="pil")
def change_view(qr_code_as_image: bool):
if not qr_code_as_image:
return {init_image_acc: gr.update(visible=True)}
else:
return {init_image_acc: gr.update(visible=False)}
use_qr_code_as_init_image.change(change_view, inputs=[use_qr_code_as_init_image], outputs=[init_image_acc])
with gr.Accordion(
label="Params: The generated QR Code functionality is largely influenced by the parameters detailed below",
open=True,
):
controlnet_conditioning_scale = gr.Slider(
minimum=0.0,
maximum=5.0,
step=0.01,
value=1.1,
label="Controlnet Conditioning Scale",
)
strength = gr.Slider(
minimum=0.0, maximum=1.0, step=0.01, value=0.9, label="Strength"
)
guidance_scale = gr.Slider(
minimum=0.0,
maximum=50.0,
step=0.25,
value=7.5,
label="Guidance Scale",
)
sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="DPM++ Karras SDE")
seed = gr.Slider(
minimum=-1,
maximum=9999999999,
step=1,
value=2313123,
label="Seed",
randomize=True,
)
with gr.Row():
run_btn = gr.Button("Run")
with gr.Column():
result_image = gr.Image(label="Result Image")
run_btn.click(
inference,
inputs=[
qr_code_content,
prompt,
negative_prompt,
guidance_scale,
controlnet_conditioning_scale,
strength,
seed,
init_image,
qr_code_image,
use_qr_code_as_init_image,
sampler,
],
outputs=[result_image],
)
# gr.Examples(
# examples=[
# [
# "https://huggingface.co/",
# "A sky view of a colorful lakes and rivers flowing through the desert",
# "ugly, disfigured, low quality, blurry, nsfw",
# 7.5,
# 1.3,
# 0.9,
# 5392011833,
# None,
# None,
# True,
# "DPM++ Karras SDE",
# ],
# [
# "https://huggingface.co/spaces/huggingface-projects/QR-code-AI-art-generator",
# "billboard amidst the bustling skyline of New York City, with iconic landmarks subtly featured in the background.",
# "ugly, disfigured, low quality, blurry, nsfw",
# 13.37,
# 2.81,
# 0.68,
# 2313123,
# "./examples/hack.png",
# "./examples/hack.png",
# False,
# "DDIM",
# ],
# [
# "https://huggingface.co/spaces/huggingface-projects/QR-code-AI-art-generator",
# "beautiful sunset in San Francisco with Golden Gate bridge in the background",
# "ugly, disfigured, low quality, blurry, nsfw",
# 11.01,
# 2.61,
# 0.66,
# 1423585430,
# "./examples/hack.png",
# "./examples/hack.png",
# False,
# "DDIM",
# ],
# [
# "https://huggingface.co",
# "A flying cat over a jungle",
# "ugly, disfigured, low quality, blurry, nsfw",
# 13,
# 2.81,
# 0.66,
# 2702246671,
# "./examples/hack.png",
# "./examples/hack.png",
# False,
# "DDIM",
# ],
# [
# "",
# "crisp QR code prominently displayed on a billboard amidst the bustling skyline of New York City, with iconic landmarks subtly featured in the background.",
# "ugly, disfigured, low quality, blurry, nsfw",
# 10.0,
# 2.0,
# 0.8,
# 2313123,
# "./examples/init.jpeg",
# "./examples/qrcode.png",
# False,
# "DDIM",
# ],
# ],
# fn=inference,
# inputs=[
# qr_code_content,
# prompt,
# negative_prompt,
# guidance_scale,
# controlnet_conditioning_scale,
# strength,
# seed,
# init_image,
# qr_code_image,
# use_qr_code_as_init_image,
# sampler,
# ],
# outputs=[result_image],
# cache_examples=True,
# )
blocks.queue(concurrency_count=1, max_size=20)
blocks.launch(share=True)
|