Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -7,14 +7,23 @@ import spaces
|
|
7 |
import torch
|
8 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
MAX_MAX_NEW_TOKENS = 2048
|
11 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
12 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
13 |
|
14 |
DESCRIPTION = """\
|
15 |
-
# Llama-2 7B Chat
|
16 |
|
17 |
-
This Space demonstrates model [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta, a Llama 2 model with 7B parameters fine-tuned for chat instructions
|
|
|
18 |
|
19 |
π For more details about the Llama 2 family of models and how to use them with `transformers`, take a look [at our blog post](https://huggingface.co/blog/llama2).
|
20 |
|
@@ -32,13 +41,32 @@ this demo is governed by the original [license](https://huggingface.co/spaces/hu
|
|
32 |
if not torch.cuda.is_available():
|
33 |
DESCRIPTION += "\n<p>Running on CPU π₯Ά This demo does not work on CPU.</p>"
|
34 |
|
35 |
-
|
36 |
if torch.cuda.is_available():
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
40 |
tokenizer.use_default_system_prompt = False
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
@spaces.GPU
|
44 |
def generate(
|
@@ -84,63 +112,21 @@ def generate(
|
|
84 |
outputs.append(text)
|
85 |
yield "".join(outputs)
|
86 |
|
|
|
|
|
|
|
87 |
|
88 |
-
|
89 |
-
fn=
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
minimum=1,
|
95 |
-
maximum=MAX_MAX_NEW_TOKENS,
|
96 |
-
step=1,
|
97 |
-
value=DEFAULT_MAX_NEW_TOKENS,
|
98 |
-
),
|
99 |
-
gr.Slider(
|
100 |
-
label="Temperature",
|
101 |
-
minimum=0.1,
|
102 |
-
maximum=4.0,
|
103 |
-
step=0.1,
|
104 |
-
value=0.6,
|
105 |
-
),
|
106 |
-
gr.Slider(
|
107 |
-
label="Top-p (nucleus sampling)",
|
108 |
-
minimum=0.05,
|
109 |
-
maximum=1.0,
|
110 |
-
step=0.05,
|
111 |
-
value=0.9,
|
112 |
-
),
|
113 |
-
gr.Slider(
|
114 |
-
label="Top-k",
|
115 |
-
minimum=1,
|
116 |
-
maximum=1000,
|
117 |
-
step=1,
|
118 |
-
value=50,
|
119 |
-
),
|
120 |
-
gr.Slider(
|
121 |
-
label="Repetition penalty",
|
122 |
-
minimum=1.0,
|
123 |
-
maximum=2.0,
|
124 |
-
step=0.05,
|
125 |
-
value=1.2,
|
126 |
-
),
|
127 |
-
],
|
128 |
-
stop_btn=None,
|
129 |
-
examples=[
|
130 |
-
["Hello there! How are you doing?"],
|
131 |
-
["Can you explain briefly to me what is the Python programming language?"],
|
132 |
-
["Explain the plot of Cinderella in a sentence."],
|
133 |
-
["How many hours does it take a man to eat a Helicopter?"],
|
134 |
-
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
|
135 |
-
],
|
136 |
-
cache_examples=False,
|
137 |
)
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
gr.
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
if __name__ == "__main__":
|
146 |
-
demo.queue(max_size=20).launch()
|
|
|
7 |
import torch
|
8 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
9 |
|
10 |
+
from llama_index.core.prompts.prompts import SimpleInputPrompt
|
11 |
+
from llama_index.llms.huggingface import HuggingFaceLLM
|
12 |
+
from llama_index.legacy.embeddings.langchain import LangchainEmbedding
|
13 |
+
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
14 |
+
from llama_index.core import set_global_service_context, ServiceContext, VectorStoreIndex, Document
|
15 |
+
from pathlib import Path
|
16 |
+
import fitz # PyMuPDF
|
17 |
+
|
18 |
MAX_MAX_NEW_TOKENS = 2048
|
19 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
20 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
21 |
|
22 |
DESCRIPTION = """\
|
23 |
+
# Llama-2 7B Chat with Document Context
|
24 |
|
25 |
+
This Space demonstrates model [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta, a Llama 2 model with 7B parameters fine-tuned for chat instructions, now enhanced with document-based context.
|
26 |
+
Feel free to play with it, or duplicate to run generations without a queue! If you want to run your own service, you can also [deploy the model on Inference Endpoints](https://huggingface.co/inference-endpoints).
|
27 |
|
28 |
π For more details about the Llama 2 family of models and how to use them with `transformers`, take a look [at our blog post](https://huggingface.co/blog/llama2).
|
29 |
|
|
|
41 |
if not torch.cuda.is_available():
|
42 |
DESCRIPTION += "\n<p>Running on CPU π₯Ά This demo does not work on CPU.</p>"
|
43 |
|
|
|
44 |
if torch.cuda.is_available():
|
45 |
+
model_name = "meta-llama/Llama-2-7b-chat-hf"
|
46 |
+
token_file = open("HF_TOKEN.txt")
|
47 |
+
auth_token = token_file.readline().strip()
|
48 |
+
|
49 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto", token=auth_token)
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir='./model/', token=auth_token)
|
51 |
tokenizer.use_default_system_prompt = False
|
52 |
|
53 |
+
# Load documents and create the index
|
54 |
+
def read_pdf_to_documents(file_path):
|
55 |
+
doc = fitz.open(file_path)
|
56 |
+
documents = []
|
57 |
+
for page_num in range(len(doc)):
|
58 |
+
page = doc.load_page(page_num)
|
59 |
+
text = page.get_text()
|
60 |
+
documents.append(Document(text=text))
|
61 |
+
return documents
|
62 |
+
|
63 |
+
file_path = Path('/content/Full_Pamplet.pdf') # Update with your document path
|
64 |
+
documents = read_pdf_to_documents(file_path)
|
65 |
+
embeddings = LangchainEmbedding(HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2"))
|
66 |
+
service_context = ServiceContext.from_defaults(chunk_size=1024, embed_model=embeddings)
|
67 |
+
set_global_service_context(service_context)
|
68 |
+
index = VectorStoreIndex.from_documents(documents)
|
69 |
+
query_engine = index.as_query_engine()
|
70 |
|
71 |
@spaces.GPU
|
72 |
def generate(
|
|
|
112 |
outputs.append(text)
|
113 |
yield "".join(outputs)
|
114 |
|
115 |
+
def query_model(question):
|
116 |
+
response = query_engine.query(question)
|
117 |
+
return response.response
|
118 |
|
119 |
+
update_prompt_interface = gr.Interface(
|
120 |
+
fn=update_system_prompt,
|
121 |
+
inputs=gr.Textbox(lines=5, placeholder="Enter the system prompt here...", label="System Prompt", value=system_prompt),
|
122 |
+
outputs=gr.Textbox(label="Status"),
|
123 |
+
title="System Prompt Updater",
|
124 |
+
description="Update the system prompt used for context."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
)
|
126 |
|
127 |
+
query_interface = gr.Interface(
|
128 |
+
fn=query_model,
|
129 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your question here...", label="User Question"),
|
130 |
+
outputs=gr.Textbox(label="Response"),
|
131 |
+
title="Document Query Assistant",
|
132 |
+
description="Ask questions based on the conte
|
|
|
|