import os from threading import Thread from typing import Iterator import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from llama_index.core.prompts.prompts import SimpleInputPrompt from llama_index.llms.huggingface import HuggingFaceLLM from llama_index.legacy.embeddings.langchain import LangchainEmbedding from langchain.embeddings.huggingface import HuggingFaceEmbeddings from llama_index.core import set_global_service_context, ServiceContext, VectorStoreIndex, Document from pathlib import Path import fitz # PyMuPDF MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) DESCRIPTION = """\ # Llama-2 7B Chat with Document Context This Space demonstrates model [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta, a Llama 2 model with 7B parameters fine-tuned for chat instructions, now enhanced with document-based context. Feel free to play with it, or duplicate to run generations without a queue! If you want to run your own service, you can also [deploy the model on Inference Endpoints](https://huggingface.co/inference-endpoints). 🔎 For more details about the Llama 2 family of models and how to use them with `transformers`, take a look [at our blog post](https://huggingface.co/blog/llama2). 🔨 Looking for an even more powerful model? Check out the [13B version](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat) or the large [70B model demo](https://huggingface.co/spaces/ysharma/Explore_llamav2_with_TGI). """ LICENSE = """
--- As a derivate work of [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta, this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md). """ if not torch.cuda.is_available(): DESCRIPTION += "\nRunning on CPU 🥶 This demo does not work on CPU.
" if torch.cuda.is_available(): model_name = "meta-llama/Llama-2-7b-chat-hf" token_file = open("HF_TOKEN.txt") auth_token = token_file.readline().strip() model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto", token=auth_token) tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir='./model/', token=auth_token) tokenizer.use_default_system_prompt = False # Load documents and create the index def read_pdf_to_documents(file_path): doc = fitz.open(file_path) documents = [] for page_num in range(len(doc)): page = doc.load_page(page_num) text = page.get_text() documents.append(Document(text=text)) return documents file_path = Path('/content/Full_Pamplet.pdf') # Update with your document path documents = read_pdf_to_documents(file_path) embeddings = LangchainEmbedding(HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")) service_context = ServiceContext.from_defaults(chunk_size=1024, embed_model=embeddings) set_global_service_context(service_context) index = VectorStoreIndex.from_documents(documents) query_engine = index.as_query_engine() @spaces.GPU def generate( message: str, chat_history: list[tuple[str, str]], system_prompt: str, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str]: conversation = [] if system_prompt: conversation.append({"role": "system", "content": system_prompt}) for user, assistant in chat_history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) def query_model(question): response = query_engine.query(question) return response.response update_prompt_interface = gr.Interface( fn=update_system_prompt, inputs=gr.Textbox(lines=5, placeholder="Enter the system prompt here...", label="System Prompt", value=system_prompt), outputs=gr.Textbox(label="Status"), title="System Prompt Updater", description="Update the system prompt used for context." ) query_interface = gr.Interface( fn=query_model, inputs=gr.Textbox(lines=2, placeholder="Enter your question here...", label="User Question"), outputs=gr.Textbox(label="Response"), title="Document Query Assistant", description="Ask questions based on the conte