Spaces:
Runtime error
Runtime error
import io | |
import os | |
from pathlib import Path | |
import uvicorn | |
from fastapi import FastAPI, BackgroundTasks, HTTPException, UploadFile, Form, Depends, status, Request | |
from fastapi.staticfiles import StaticFiles | |
from fastapi.middleware.cors import CORSMiddleware | |
from fastapi_utils.tasks import repeat_every | |
import numpy as np | |
import torch | |
from torch import autocast | |
from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline | |
from diffusers.models import AutoencoderKL | |
from PIL import Image | |
import gradio as gr | |
import skimage | |
import skimage.measure | |
from utils import * | |
import boto3 | |
import magic | |
import sqlite3 | |
import requests | |
import shortuuid | |
import re | |
import time | |
AWS_ACCESS_KEY_ID = os.getenv('AWS_ACCESS_KEY_ID') | |
AWS_SECRET_KEY = os.getenv('AWS_SECRET_KEY') | |
AWS_S3_BUCKET_NAME = os.getenv('AWS_S3_BUCKET_NAME') | |
LIVEBLOCKS_SECRET = os.environ.get("LIVEBLOCKS_SECRET") | |
HF_TOKEN = os.environ.get("API_TOKEN") or True | |
FILE_TYPES = { | |
'image/png': 'png', | |
'image/jpeg': 'jpg', | |
} | |
DB_PATH = Path("rooms.db") | |
app = FastAPI() | |
if not DB_PATH.exists(): | |
print("Creating database") | |
print("DB_PATH", DB_PATH) | |
db = sqlite3.connect(DB_PATH) | |
with open(Path("schema.sql"), "r") as f: | |
db.executescript(f.read()) | |
db.commit() | |
db.close() | |
def get_db(): | |
db = sqlite3.connect(DB_PATH, check_same_thread=False) | |
db.row_factory = sqlite3.Row | |
try: | |
yield db | |
except Exception: | |
db.rollback() | |
finally: | |
db.close() | |
s3 = boto3.client(service_name='s3', | |
aws_access_key_id=AWS_ACCESS_KEY_ID, | |
aws_secret_access_key=AWS_SECRET_KEY) | |
try: | |
SAMPLING_MODE = Image.Resampling.LANCZOS | |
except Exception as e: | |
SAMPLING_MODE = Image.LANCZOS | |
blocks = gr.Blocks().queue() | |
model = {} | |
STATIC_MASK = Image.open("mask.png") | |
def get_model(): | |
if "inpaint" not in model: | |
vae = AutoencoderKL.from_pretrained(f"stabilityai/sd-vae-ft-ema") | |
inpaint = StableDiffusionInpaintPipeline.from_pretrained( | |
"runwayml/stable-diffusion-inpainting", | |
revision="fp16", | |
torch_dtype=torch.float16, | |
vae=vae, | |
).to("cuda") | |
# lms = LMSDiscreteScheduler( | |
# beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear") | |
# img2img = StableDiffusionImg2ImgPipeline( | |
# vae=text2img.vae, | |
# text_encoder=text2img.text_encoder, | |
# tokenizer=text2img.tokenizer, | |
# unet=text2img.unet, | |
# scheduler=lms, | |
# safety_checker=text2img.safety_checker, | |
# feature_extractor=text2img.feature_extractor, | |
# ).to("cuda") | |
# try: | |
# total_memory = torch.cuda.get_device_properties(0).total_memory // ( | |
# 1024 ** 3 | |
# ) | |
# if total_memory <= 5: | |
# inpaint.enable_attention_slicing() | |
# except: | |
# pass | |
model["inpaint"] = inpaint | |
# model["img2img"] = img2img | |
return model["inpaint"] | |
# model["img2img"] | |
# init model on startup | |
get_model() | |
async def run_outpaint( | |
input_image, | |
prompt_text, | |
strength, | |
guidance, | |
step, | |
fill_mode, | |
room_id, | |
image_key | |
): | |
inpaint = get_model() | |
sel_buffer = np.array(input_image) | |
img = sel_buffer[:, :, 0:3] | |
mask = sel_buffer[:, :, -1] | |
nmask = 255 - mask | |
process_size = 512 | |
if nmask.sum() < 1: | |
print("inpaiting with fixed Mask") | |
mask = np.array(STATIC_MASK)[:, :, 0] | |
img, mask = functbl[fill_mode](img, mask) | |
init_image = Image.fromarray(img) | |
mask = 255 - mask | |
mask = skimage.measure.block_reduce(mask, (8, 8), np.max) | |
mask = mask.repeat(8, axis=0).repeat(8, axis=1) | |
mask_image = Image.fromarray(mask) | |
elif mask.sum() > 0: | |
print("inpainting") | |
img, mask = functbl[fill_mode](img, mask) | |
init_image = Image.fromarray(img) | |
mask = 255 - mask | |
mask = skimage.measure.block_reduce(mask, (8, 8), np.max) | |
mask = mask.repeat(8, axis=0).repeat(8, axis=1) | |
mask_image = Image.fromarray(mask) | |
# mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 8)) | |
else: | |
print("text2image") | |
print("inpainting") | |
img, mask = functbl[fill_mode](img, mask) | |
init_image = Image.fromarray(img) | |
mask = 255 - mask | |
mask = skimage.measure.block_reduce(mask, (8, 8), np.max) | |
mask = mask.repeat(8, axis=0).repeat(8, axis=1) | |
mask_image = Image.fromarray(mask) | |
# mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 8)) | |
with autocast("cuda"): | |
output = inpaint( | |
prompt=prompt_text, | |
image=init_image.resize( | |
(process_size, process_size), resample=SAMPLING_MODE | |
), | |
mask_image=mask_image.resize((process_size, process_size)), | |
strength=strength, | |
num_inference_steps=step, | |
guidance_scale=guidance, | |
) | |
image = output["images"][0] | |
is_nsfw = output["nsfw_content_detected"][0] | |
image_url = {} | |
if not is_nsfw: | |
# print("not nsfw, uploading") | |
image_url = await upload_file(image, prompt_text, room_id, image_key) | |
params = { | |
"is_nsfw": is_nsfw, | |
"image": image_url | |
} | |
return params | |
with blocks as demo: | |
with gr.Row(): | |
with gr.Column(scale=3, min_width=270): | |
sd_prompt = gr.Textbox( | |
label="Prompt", placeholder="input your prompt here", lines=4 | |
) | |
with gr.Column(scale=2, min_width=150): | |
sd_strength = gr.Slider( | |
label="Strength", minimum=0.0, maximum=1.0, value=0.75, step=0.01 | |
) | |
with gr.Column(scale=1, min_width=150): | |
sd_step = gr.Number(label="Step", value=50, precision=0) | |
sd_guidance = gr.Number(label="Guidance", value=7.5) | |
with gr.Row(): | |
with gr.Column(scale=4, min_width=600): | |
init_mode = gr.Radio( | |
label="Init mode", | |
choices=[ | |
"patchmatch", | |
"edge_pad", | |
"cv2_ns", | |
"cv2_telea", | |
"gaussian", | |
"perlin", | |
], | |
value="patchmatch", | |
type="value", | |
) | |
model_input = gr.Image(label="Input", type="pil", image_mode="RGBA") | |
room_id = gr.Textbox(label="Room ID") | |
image_key = gr.Textbox(label="image_key") | |
proceed_button = gr.Button("Proceed", elem_id="proceed") | |
params = gr.JSON() | |
proceed_button.click( | |
fn=run_outpaint, | |
inputs=[ | |
model_input, | |
sd_prompt, | |
sd_strength, | |
sd_guidance, | |
sd_step, | |
init_mode, | |
room_id, | |
image_key | |
], | |
outputs=[params], | |
) | |
blocks.config['dev_mode'] = False | |
app = gr.mount_gradio_app(app, blocks, "/gradio", | |
gradio_api_url="http://0.0.0.0:7860/gradio/") | |
def generateAuthToken(): | |
response = requests.get(f"https://liveblocks.io/api/authorize", | |
headers={"Authorization": f"Bearer {LIVEBLOCKS_SECRET}"}) | |
if response.status_code == 200: | |
data = response.json() | |
return data["token"] | |
else: | |
raise Exception(response.status_code, response.text) | |
def get_room_count(room_id: str, jwtToken: str = ''): | |
response = requests.get( | |
f"https://liveblocks.net/api/v1/room/{room_id}/users", headers={"Authorization": f"Bearer {jwtToken}", "Content-Type": "application/json"}) | |
if response.status_code == 200: | |
res = response.json() | |
if "data" in res: | |
return len(res["data"]) | |
else: | |
return 0 | |
raise Exception("Error getting room count") | |
async def sync_rooms(): | |
print("Syncing rooms") | |
try: | |
jwtToken = generateAuthToken() | |
for db in get_db(): | |
rooms = db.execute("SELECT * FROM rooms").fetchall() | |
for row in rooms: | |
room_id = row["room_id"] | |
users_count = get_room_count(room_id, jwtToken) | |
cursor = db.cursor() | |
cursor.execute( | |
"UPDATE rooms SET users_count = ? WHERE room_id = ?", (users_count, room_id)) | |
db.commit() | |
except Exception as e: | |
print(e) | |
print("Rooms update failed") | |
async def get_rooms(db: sqlite3.Connection = Depends(get_db)): | |
rooms = db.execute("SELECT * FROM rooms").fetchall() | |
return rooms | |
async def autorize(request: Request, db: sqlite3.Connection = Depends(get_db)): | |
data = await request.json() | |
room = data["room"] | |
payload = { | |
"userId": str(shortuuid.uuid()), | |
"userInfo": { | |
"name": "Anon" | |
}} | |
response = requests.post(f"https://api.liveblocks.io/v2/rooms/{room}/authorize", | |
headers={"Authorization": f"Bearer {LIVEBLOCKS_SECRET}"}, json=payload) | |
if response.status_code == 200: | |
# user in, incremente room count | |
# cursor = db.cursor() | |
# cursor.execute( | |
# "UPDATE rooms SET users_count = users_count + 1 WHERE room_id = ?", (room,)) | |
# db.commit() | |
sync_rooms() | |
return response.json() | |
else: | |
raise Exception(response.status_code, response.text) | |
def slugify(value): | |
value = re.sub(r'[^\w\s-]', '', value).strip().lower() | |
out = re.sub(r'[-\s]+', '-', value) | |
return out[:400] | |
async def upload_file(image: Image.Image, prompt: str, room_id: str, image_key: str): | |
room_id = room_id.strip() or "uploads" | |
image_key = image_key.strip() or "" | |
image = image.convert('RGB') | |
print("Uploading file from predict") | |
temp_file = io.BytesIO() | |
image.save(temp_file, format="JPEG") | |
temp_file.seek(0) | |
id = shortuuid.uuid() | |
date = int(time.time()) | |
prompt_slug = slugify(prompt) | |
filename = f"{date}-{id}-{image_key}-{prompt_slug}.jpg" | |
s3.upload_fileobj(Fileobj=temp_file, Bucket=AWS_S3_BUCKET_NAME, Key=f"{room_id}/" + | |
filename, ExtraArgs={"ContentType": "image/jpeg", "CacheControl": "max-age=31536000"}) | |
temp_file.close() | |
out = {"url": f'https://d26smi9133w0oo.cloudfront.net/{room_id}/{filename}', | |
"filename": filename} | |
return out | |
async def create_upload_file(file: UploadFile): | |
contents = await file.read() | |
file_size = len(contents) | |
if not 0 < file_size < 20E+06: | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail='Supported file size is less than 2 MB' | |
) | |
file_type = magic.from_buffer(contents, mime=True) | |
if file_type.lower() not in FILE_TYPES: | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail=f'Unsupported file type {file_type}. Supported types are {FILE_TYPES}' | |
) | |
temp_file = io.BytesIO() | |
temp_file.write(contents) | |
temp_file.seek(0) | |
s3.upload_fileobj(Fileobj=temp_file, Bucket=AWS_S3_BUCKET_NAME, Key="community/" + | |
file.filename, ExtraArgs={"ContentType": file.content_type, "CacheControl": "max-age=31536000"}) | |
temp_file.close() | |
return {"url": f'https://d26smi9133w0oo.cloudfront.net/community/{file.filename}', "filename": file.filename} | |
app.mount("/", StaticFiles(directory="../static", html=True), name="static") | |
origins = ["*"] | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=origins, | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
if __name__ == "__main__": | |
uvicorn.run(app, host="0.0.0.0", port=7860, | |
log_level="debug", reload=False) | |