from PIL import Image import torch from transformers.tools.base import Tool from transformers.utils import ( is_accelerate_available, is_vision_available, ) from diffusers import DiffusionPipeline if is_accelerate_available(): from accelerate import PartialState IMAGE_TRANSFORMATION_DESCRIPTION = ( "This is a tool that transforms an image according to a prompt and returns the " "modified image." ) class ImageTransformationTool(Tool): name = "image_transformation" default_stable_diffusion_checkpoint = "timbrooks/instruct-pix2pix" description = IMAGE_TRANSFORMATION_DESCRIPTION inputs = { 'image': {"type": Image.Image, "description": "the image to transform"}, 'prompt': {"type": str, "description": "the prompt to use to change the image"} } output_type = Image.Image def __init__(self, device=None, controlnet=None, stable_diffusion=None, **hub_kwargs) -> None: if not is_accelerate_available(): raise ImportError("Accelerate should be installed in order to use tools.") if not is_vision_available(): raise ImportError("Pillow should be installed in order to use the StableDiffusionTool.") super().__init__() self.stable_diffusion = self.default_stable_diffusion_checkpoint self.device = device self.hub_kwargs = hub_kwargs def setup(self): if self.device is None: self.device = PartialState().default_device self.pipeline = DiffusionPipeline.from_pretrained(self.stable_diffusion) self.pipeline.to(self.device) if self.device.type == "cuda": self.pipeline.to(torch_dtype=torch.float16) self.is_initialized = True def __call__(self, image, prompt): if not self.is_initialized: self.setup() negative_prompt = "low quality, bad quality, deformed, low resolution" added_prompt = " , highest quality, highly realistic, very high resolution" return self.pipeline( prompt + added_prompt, image, negative_prompt=negative_prompt, num_inference_steps=50, ).images[0]