File size: 14,556 Bytes
2d5ffb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
#!/usr/bin/env python3
import re
"""
Extracts code from the file "./Libraries.ts".
(Note that "Libraries.ts", must be in the same directory as
this script).
"""
file = None
def read_file(library: str, model_name: str) -> str:
text = file
match = re.search('const ' + library + '.*', text, re.DOTALL).group()
if match:
text = match[match.index('`') + 1:match.index('`;')].replace('${model.id}', model_name)
return text
file = """
import type { ModelData } from "./Types";
/**
* Add your new library here.
*/
export enum ModelLibrary {
"adapter-transformers" = "Adapter Transformers",
"allennlp" = "allenNLP",
"asteroid" = "Asteroid",
"diffusers" = "Diffusers",
"espnet" = "ESPnet",
"fairseq" = "Fairseq",
"flair" = "Flair",
"keras" = "Keras",
"nemo" = "NeMo",
"pyannote-audio" = "pyannote.audio",
"sentence-transformers" = "Sentence Transformers",
"sklearn" = "Scikit-learn",
"spacy" = "spaCy",
"speechbrain" = "speechbrain",
"tensorflowtts" = "TensorFlowTTS",
"timm" = "Timm",
"fastai" = "fastai",
"transformers" = "Transformers",
"stanza" = "Stanza",
"fasttext" = "fastText",
"stable-baselines3" = "Stable-Baselines3",
"ml-agents" = "ML-Agents",
}
export const ALL_MODEL_LIBRARY_KEYS = Object.keys(ModelLibrary) as (keyof typeof ModelLibrary)[];
/**
* Elements configurable by a model library.
*/
export interface LibraryUiElement {
/**
* Name displayed on the main
* call-to-action button on the model page.
*/
btnLabel: string;
/**
* Repo name
*/
repoName: string;
/**
* URL to library's repo
*/
repoUrl: string;
/**
* Code snippet displayed on model page
*/
snippet: (model: ModelData) => string;
}
function nameWithoutNamespace(modelId: string): string {
const splitted = modelId.split("/");
return splitted.length === 1 ? splitted[0] : splitted[1];
}
//#region snippets
const adapter_transformers = (model: ModelData) =>
`from transformers import ${model.config?.adapter_transformers?.model_class}
model = ${model.config?.adapter_transformers?.model_class}.from_pretrained("${model.config?.adapter_transformers?.{model.id}}")
model.load_adapter("${model.id}", source="hf")`;
const allennlpUnknown = (model: ModelData) =>
`import allennlp_models
from allennlp.predictors.predictor import Predictor
predictor = Predictor.from_path("hf://${model.id}")`;
const allennlpQuestionAnswering = (model: ModelData) =>
`import allennlp_models
from allennlp.predictors.predictor import Predictor
predictor = Predictor.from_path("hf://${model.id}")
predictor_input = {"passage": "My name is Wolfgang and I live in Berlin", "question": "Where do I live?"}
predictions = predictor.predict_json(predictor_input)`;
const allennlp = (model: ModelData) => {
if (model.tags?.includes("question-answering")) {
return allennlpQuestionAnswering(model);
}
return allennlpUnknown(model);
};
const asteroid = (model: ModelData) =>
`from asteroid.models import BaseModel
model = BaseModel.from_pretrained("${model.id}")`;
const diffusers = (model: ModelData) =>
`from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""})`;
const espnetTTS = (model: ModelData) =>
`from espnet2.bin.tts_inference import Text2Speech
model = Text2Speech.from_pretrained("${model.id}")
speech, *_ = model("text to generate speech from")`;
const espnetASR = (model: ModelData) =>
`from espnet2.bin.asr_inference import Speech2Text
model = Speech2Text.from_pretrained(
"${model.id}"
)
speech, rate = soundfile.read("speech.wav")
text, *_ = model(speech)`;
const espnetUnknown = () =>
`unknown model type (must be text-to-speech or automatic-speech-recognition)`;
const espnet = (model: ModelData) => {
if (model.tags?.includes("text-to-speech")) {
return espnetTTS(model);
} else if (model.tags?.includes("automatic-speech-recognition")) {
return espnetASR(model);
}
return espnetUnknown();
};
const fairseq = (model: ModelData) =>
`from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
"${model.id}"
)`;
const flair = (model: ModelData) =>
`from flair.models import SequenceTagger
tagger = SequenceTagger.load("${model.id}")`;
const keras = (model: ModelData) =>
`from huggingface_hub import from_pretrained_keras
model = from_pretrained_keras("${model.id}")
`;
const pyannote_audio_pipeline = (model: ModelData) =>
`from pyannote.audio import Pipeline
pipeline = Pipeline.from_pretrained("${model.id}")
# inference on the whole file
pipeline("file.wav")
# inference on an excerpt
from pyannote.core import Segment
excerpt = Segment(start=2.0, end=5.0)
from pyannote.audio import Audio
waveform, sample_rate = Audio().crop("file.wav", excerpt)
pipeline({"waveform": waveform, "sample_rate": sample_rate})`;
const pyannote_audio_model = (model: ModelData) =>
`from pyannote.audio import Model, Inference
model = Model.from_pretrained("${model.id}")
inference = Inference(model)
# inference on the whole file
inference("file.wav")
# inference on an excerpt
from pyannote.core import Segment
excerpt = Segment(start=2.0, end=5.0)
inference.crop("file.wav", excerpt)`;
const pyannote_audio = (model: ModelData) => {
if (model.tags?.includes("pyannote-audio-pipeline")) {
return pyannote_audio_pipeline(model);
}
return pyannote_audio_model(model);
};
const tensorflowttsTextToMel = (model: ModelData) =>
`from tensorflow_tts.inference import AutoProcessor, TFAutoModel
processor = AutoProcessor.from_pretrained("${model.id}")
model = TFAutoModel.from_pretrained("${model.id}")
`;
const tensorflowttsMelToWav = (model: ModelData) =>
`from tensorflow_tts.inference import TFAutoModel
model = TFAutoModel.from_pretrained("${model.id}")
audios = model.inference(mels)
`;
const tensorflowttsUnknown = (model: ModelData) =>
`from tensorflow_tts.inference import TFAutoModel
model = TFAutoModel.from_pretrained("${model.id}")
`;
const tensorflowtts = (model: ModelData) => {
if (model.tags?.includes("text-to-mel")) {
return tensorflowttsTextToMel(model);
} else if (model.tags?.includes("mel-to-wav")) {
return tensorflowttsMelToWav(model);
}
return tensorflowttsUnknown(model);
};
const timm = (model: ModelData) =>
`import timm
model = timm.create_model("hf_hub:${model.id}", pretrained=True)`;
const sklearn = (model: ModelData) =>
`from huggingface_hub import hf_hub_download
import joblib
model = joblib.load(
hf_hub_download("${model.id}", "sklearn_model.joblib")
)`;
const fastai = (model: ModelData) =>
`from huggingface_hub import from_pretrained_fastai
learn = from_pretrained_fastai("${model.id}")`;
const sentenceTransformers = (model: ModelData) =>
`from sentence_transformers import SentenceTransformer
model = SentenceTransformer("${model.id}")`;
const spacy = (model: ModelData) =>
`!pip install https://huggingface.co/${model.id}/resolve/main/${nameWithoutNamespace(model.id)}-any-py3-none-any.whl
# Using spacy.load().
import spacy
nlp = spacy.load("${nameWithoutNamespace(model.id)}")
# Importing as module.
import ${nameWithoutNamespace(model.id)}
nlp = ${nameWithoutNamespace(model.id)}.load()`;
const stanza = (model: ModelData) =>
`import stanza
stanza.download("${nameWithoutNamespace(model.id).replace("stanza-", "")}")
nlp = stanza.Pipeline("${nameWithoutNamespace(model.id).replace("stanza-", "")}")`;
const speechBrainMethod = (speechbrainInterface: string) => {
switch (speechbrainInterface) {
case "EncoderClassifier":
return "classify_file";
case "EncoderDecoderASR":
case "EncoderASR":
return "transcribe_file";
case "SpectralMaskEnhancement":
return "enhance_file";
case "SepformerSeparation":
return "separate_file";
default:
return undefined;
}
};
const speechbrain = (model: ModelData) => {
const speechbrainInterface = model.config?.speechbrain?.interface;
if (speechbrainInterface === undefined) {
return `# interface not specified in config.json`;
}
const speechbrainMethod = speechBrainMethod(speechbrainInterface);
if (speechbrainMethod === undefined) {
return `# interface in config.json invalid`;
}
return `from speechbrain.pretrained import ${speechbrainInterface}
model = ${speechbrainInterface}.from_hparams(
"${model.id}"
)
model.${speechbrainMethod}("file.wav")`;
};
const transformers = (model: ModelData) => {
const info = model.transformersInfo;
if (!info) {
return `# ⚠️ Type of model unknown`;
}
if (info.processor) {
const varName = info.processor === "AutoTokenizer" ? "tokenizer"
: info.processor === "AutoFeatureExtractor" ? "extractor"
: "processor"
;
return [
`from transformers import ${info.processor}, ${info.auto_model}`,
"",
`${varName} = ${info.processor}.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""})`,
"",
`model = ${info.auto_model}.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""})`,
].join("\n");
} else {
return [
`from transformers import ${info.auto_model}`,
"",
`model = ${info.auto_model}.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""})`,
].join("\n");
}
};
const fasttext = (model: ModelData) =>
`from huggingface_hub import hf_hub_download
import fasttext
model = fasttext.load_model(hf_hub_download("${model.id}", "model.bin"))`;
const stableBaselines3 = (model: ModelData) =>
`from huggingface_sb3 import load_from_hub
checkpoint = load_from_hub(
repo_id="${model.id}",
filename="{MODEL FILENAME}.zip",
)`;
const nemoDomainResolver = (domain: string, model: ModelData): string | undefined => {
const modelName = `${nameWithoutNamespace(model.id)}.nemo`;
switch (domain) {
case "ASR":
return `import nemo.collections.asr as nemo_asr
asr_model = nemo_asr.models.ASRModel.from_pretrained("${model.id}")
transcriptions = asr_model.transcribe(["file.wav"])`;
default:
return undefined;
}
};
const mlAgents = (model: ModelData) =>
`mlagents-load-from-hf --repo-id="${model.id}" --local-dir="./downloads"`;
const nemo = (model: ModelData) => {
let command: string | undefined = undefined;
// Resolve the tag to a nemo domain/sub-domain
if (model.tags?.includes("automatic-speech-recognition")) {
command = nemoDomainResolver("ASR", model);
}
return command ?? `# tag did not correspond to a valid NeMo domain.`;
};
//#endregion
export const MODEL_LIBRARIES_UI_ELEMENTS: { [key in keyof typeof ModelLibrary]?: LibraryUiElement } = {
// ^^ TODO(remove the optional ? marker when Stanza snippet is available)
"adapter-transformers": {
btnLabel: "Adapter Transformers",
repoName: "adapter-transformers",
repoUrl: "https://github.com/Adapter-Hub/adapter-transformers",
snippet: adapter_transformers,
},
"allennlp": {
btnLabel: "AllenNLP",
repoName: "AllenNLP",
repoUrl: "https://github.com/allenai/allennlp",
snippet: allennlp,
},
"asteroid": {
btnLabel: "Asteroid",
repoName: "Asteroid",
repoUrl: "https://github.com/asteroid-team/asteroid",
snippet: asteroid,
},
"diffusers": {
btnLabel: "Diffusers",
repoName: "🤗/diffusers",
repoUrl: "https://github.com/huggingface/diffusers",
snippet: diffusers,
},
"espnet": {
btnLabel: "ESPnet",
repoName: "ESPnet",
repoUrl: "https://github.com/espnet/espnet",
snippet: espnet,
},
"fairseq": {
btnLabel: "Fairseq",
repoName: "fairseq",
repoUrl: "https://github.com/pytorch/fairseq",
snippet: fairseq,
},
"flair": {
btnLabel: "Flair",
repoName: "Flair",
repoUrl: "https://github.com/flairNLP/flair",
snippet: flair,
},
"keras": {
btnLabel: "Keras",
repoName: "Keras",
repoUrl: "https://github.com/keras-team/keras",
snippet: keras,
},
"nemo": {
btnLabel: "NeMo",
repoName: "NeMo",
repoUrl: "https://github.com/NVIDIA/NeMo",
snippet: nemo,
},
"pyannote-audio": {
btnLabel: "pyannote.audio",
repoName: "pyannote-audio",
repoUrl: "https://github.com/pyannote/pyannote-audio",
snippet: pyannote_audio,
},
"sentence-transformers": {
btnLabel: "sentence-transformers",
repoName: "sentence-transformers",
repoUrl: "https://github.com/UKPLab/sentence-transformers",
snippet: sentenceTransformers,
},
"sklearn": {
btnLabel: "Scikit-learn",
repoName: "Scikit-learn",
repoUrl: "https://github.com/scikit-learn/scikit-learn",
snippet: sklearn,
},
"fastai": {
btnLabel: "fastai",
repoName: "fastai",
repoUrl: "https://github.com/fastai/fastai",
snippet: fastai,
},
"spacy": {
btnLabel: "spaCy",
repoName: "spaCy",
repoUrl: "https://github.com/explosion/spaCy",
snippet: spacy,
},
"speechbrain": {
btnLabel: "speechbrain",
repoName: "speechbrain",
repoUrl: "https://github.com/speechbrain/speechbrain",
snippet: speechbrain,
},
"stanza": {
btnLabel: "Stanza",
repoName: "stanza",
repoUrl: "https://github.com/stanfordnlp/stanza",
snippet: stanza,
},
"tensorflowtts": {
btnLabel: "TensorFlowTTS",
repoName: "TensorFlowTTS",
repoUrl: "https://github.com/TensorSpeech/TensorFlowTTS",
snippet: tensorflowtts,
},
"timm": {
btnLabel: "timm",
repoName: "pytorch-image-models",
repoUrl: "https://github.com/rwightman/pytorch-image-models",
snippet: timm,
},
"transformers": {
btnLabel: "Transformers",
repoName: "🤗/transformers",
repoUrl: "https://github.com/huggingface/transformers",
snippet: transformers,
},
"fasttext": {
btnLabel: "fastText",
repoName: "fastText",
repoUrl: "https://fasttext.cc/",
snippet: fasttext,
},
"stable-baselines3": {
btnLabel: "stable-baselines3",
repoName: "stable-baselines3",
repoUrl: "https://github.com/huggingface/huggingface_sb3",
snippet: stableBaselines3,
},
"ml-agents": {
btnLabel: "ml-agents",
repoName: "ml-agents",
repoUrl: "https://github.com/huggingface/ml-agents",
snippet: mlAgents,
},
} as const;
"""
if __name__ == '__main__':
import sys
library_name = "keras"
model_name = "Distillgpt2"
print(read_file(library_name, model_name))
""""
try:
args = sys.argv[1:]
if args:
print(read_file(args[0], args[1]))
except IndexError:
pass
""" |