File size: 18,303 Bytes
2d5ffb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
import re
import streamlit as st
from modelcards import CardData, ModelCard
from markdownTagExtract import tag_checker,listToString,to_markdown
#from specific_extraction import extract_it
# from persist import persist
#global bytes_data
################################################################
#### Markdown parser logic #################################
################################################################
def file_upload():
bytes_data = st.session_state.markdown_upload
return bytes_data
# Sets up the basics
model_card_md = file_upload() # this is where the new model card will be read in from
model_card_md = model_card_md#.decode("utf-8")
# Does metadata appear in any other format than this?
metadata_re = re.compile("^---(.*?)---", re.DOTALL)
header_re = re.compile("^\s*# (.*)", re.MULTILINE)
subheader_re = re.compile("^\s*## (.*)", re.MULTILINE)
subsubheader_re = re.compile("^\s*### (.*)", re.MULTILINE)
subsubsubheader_re = re.compile("^\s*#### (.*)", re.MULTILINE)
# We could be a lot more flexible on this re.
# We require keys to be bold-faced here.
# We don't have to require bold, as long as it's key:value
# **License:**
# Bold terms use ** or __
# Allows the mixing of ** and __ for bold but eh whatev
key_value_re = re.compile("^\s*([*_]{2}[^*_]+[*_]{2})([^\n]*)", re.MULTILINE)
# Hyphens or stars mark list items.
# Unordered list
list_item_re = re.compile("^\s*[-*+]\s+.*", re.MULTILINE)
# This is the ordered list
enum_re = re.compile("^\s*[0-9].*", re.MULTILINE)
table_re = re.compile("^\s*\|.*", re.MULTILINE)
text_item_re = re.compile("^\s*[A-Za-z(](.*)", re.MULTILINE)
# text_item_re = re.compile("^\s*#\s*.*", re.MULTILINE)
# Allows the mixing of -* and *- for italics but eh whatev
italicized_text_item_re = re.compile(
"^[_*][^_*\s].*\n?.*[^_*][_*]$", flags=re.MULTILINE
)
tag_re = re.compile("^\s*<.*", re.MULTILINE)
image_re = re.compile("!\[.*\]\(.*\)", re.MULTILINE)
subheader_re_dict = {}
subheader_re_dict[header_re] = subheader_re
subheader_re_dict[subheader_re] = subsubheader_re
subheader_re_dict[subsubheader_re] = subsubsubheader_re
def get_metadata(section_text):
return list(metadata_re.finditer(section_text))
def find_images(section_text):
return list(image_re.finditer(section_text))
def find_tags(section_text):
return list(tag_re.finditer(section_text))
def find_tables(section_text):
return list(table_re.finditer(section_text))
def find_enums(section_text):
return list(enum_re.finditer(section_text))
# Extracts the stuff from the .md file
def find_key_values(section_text):
return list(key_value_re.finditer(section_text))
def find_lists(section_text):
# Find lists: Those lines starting with either '-' or '*'
return list(list_item_re.finditer(section_text))
def find_texts(section_text):
# Find texts: Free writing within a section
basic_text = list(text_item_re.finditer(section_text))
ital_text = list(italicized_text_item_re.finditer(section_text))
free_text = basic_text + ital_text
return free_text
def find_headers(full_text):
headers = list(header_re.finditer(full_text))
subheaders = list(subheader_re.finditer(full_text))
subsubheaders = list(subsubheader_re.finditer(full_text))
subsubsubheaders = list(subsubsubheader_re.finditer(full_text))
return (headers, subheaders, subsubheaders, subsubsubheaders)
metadata_list = get_metadata(model_card_md)
if metadata_list != []:
metadata_end = metadata_list[-1].span()[-1]
print("Metadata extracted")
# Metadata processing can happen here.
# For now I'm just ignoring it.
model_card_md = model_card_md[metadata_end:]
else:
print("No metadata found")
# Matches of all header types
headers_list = find_headers(model_card_md)
print("Headers extracted")
# This type of header (one #)
headers = headers_list[0]
## This type of header (two ##)
subheaders = headers_list[1]
### This type of header
subsubheaders = headers_list[2]
#### This type of header
subsubsubheaders = headers_list[3]
# Matches of bulleted lists
lists_list = find_lists(model_card_md)
print("Bulleted lists extracted")
enums_list = find_enums(model_card_md)
print("Enumerated lists extracted")
key_value_list = find_key_values(model_card_md)
print("Key values extracted")
tables_list = find_tables(model_card_md)
print("Tables extracted")
tags_list = find_tags(model_card_md)
print("Markup tags extracted")
images_list = find_images(model_card_md)
print("Images extracted")
# Matches of free text within a section
texts_list = find_texts(model_card_md)
print("Free text extracted")
# List items have the attribute: value;
# This provides for special handling of those strings,
# allowing us to check if it's a list item in order to split/print ok.
LIST_ITEM = "List item"
KEY_VALUE = "Key: Value"
FREE_TEXT = "Free text"
ENUM_LIST_ITEM = "Enum item"
TABLE_ITEM = "Table item"
TAG_ITEM = "Markup tag"
IMAGE_ITEM = "Image"
def create_span_dict(match_list, match_type):
"""
Creates a dictionary made out of all the spans.
This is useful for knowing which types to fill out with what in the app.
Also useful for checking if there are spans in the .md file that we've missed.
"""
span_dict = {}
for match in match_list:
if len(match.group().strip()) > 0:
span_dict[(match.span())] = (match.group(), match_type)
return span_dict
metadata_span_dict = create_span_dict(metadata_list, "Metadata")
# Makes a little dict for each span type
header_span_dict = create_span_dict(headers, "# Header")
subheader_span_dict = create_span_dict(subheaders, "## Subheader")
subsubheader_span_dict = create_span_dict(subsubheaders, "### Subsubheader")
subsubsubheader_span_dict = create_span_dict(subsubsubheaders, "#### Subsubsubheader")
key_value_span_dict = create_span_dict(key_value_list, KEY_VALUE)
lists_span_dict = create_span_dict(lists_list, LIST_ITEM)
enums_span_dict = create_span_dict(enums_list, ENUM_LIST_ITEM)
tables_span_dict = create_span_dict(tables_list, TABLE_ITEM)
tags_span_dict = create_span_dict(tags_list, TAG_ITEM)
images_span_dict = create_span_dict(images_list, IMAGE_ITEM)
texts_span_dict = create_span_dict(texts_list, FREE_TEXT)
# We don't have to have these organized by type necessarily.
# Doing it here for clarity.
all_spans_dict = {}
all_spans_dict["headers"] = header_span_dict
all_spans_dict["subheaders"] = subheader_span_dict
all_spans_dict["subsubheaders"] = subsubheader_span_dict
all_spans_dict["subsubsubheaders"] = subsubsubheader_span_dict
all_spans_dict[LIST_ITEM] = lists_span_dict
all_spans_dict[KEY_VALUE] = key_value_span_dict
all_spans_dict[TABLE_ITEM] = tables_span_dict
all_spans_dict[ENUM_LIST_ITEM] = enums_span_dict
all_spans_dict[TAG_ITEM] = tags_span_dict
all_spans_dict[IMAGE_ITEM] = images_span_dict
all_spans_dict[FREE_TEXT] = texts_span_dict
def get_sorted_spans(spans_dict):
merged_spans = {}
for span_dict in spans_dict.values():
merged_spans.update(span_dict)
sorted_spans = sorted(merged_spans)
return sorted_spans, merged_spans
sorted_spans, merged_spans = get_sorted_spans(all_spans_dict)
# Sanity/Parse check. Have we captured all spans in the .md file?
if sorted_spans[0][0] != 0:
print("FYI, our spans don't start at the start of the file.")
print("We did not catch this start:")
print(model_card_md[: sorted_spans[0][0]])
for idx in range(len(sorted_spans) - 1):
last_span_end = sorted_spans[idx][1]
new_span_start = sorted_spans[idx + 1][0]
if new_span_start > last_span_end + 1:
start_nonparse = sorted_spans[idx]
end_nonparse = sorted_spans[idx + 1]
text = model_card_md[start_nonparse[1] : end_nonparse[0]]
if text.strip():
print("Found an unparsed span in the file:")
print(start_nonparse)
print(" ---> ")
print(end_nonparse)
print(text)
# print(header_span_dict)
def section_map_to_help_text(text_retrieved):
presit_states = {
"## Model Details": "Give an overview of your model, the relevant research paper, who trained it, etc.",
"## How to Get Started with the Model": "Give an overview of how to get started with the model",
"## Limitations and Biases": "Provide an overview of the possible Limitations and Risks that may be associated with this model",
"## Uses": "Detail the potential uses, intended use and out-of-scope uses for this model",
"## Training": "Provide an overview of the Training Data and Training Procedure for this model",
"## Evaluation Results": "Detail the Evaluation Results for this model",
"## Environmental Impact": "Provide an estimate for the carbon emissions: Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here.",
"## Citation Information": "How to best cite the model authors",
"## Glossary": "If relevant, include terms and calculations in this section that can help readers understand the model or model card.",
"## More Information": "Any additional information",
"## Model Card Authors": "This section provides another layer of transparency and accountability. Whose views is this model card representing? How many voices were included in its construction? Etc.",
"Model Card Contact": "Mediums to use, in order to contact the model creators",
"## Technical Specifications": " Additional technical information",
'## Model Examination': " Examining the model",
}
for key in presit_states:
if key == text_retrieved:
return presit_states(key)
def section_map_to_persist(text_retrieved):
presit_states = {
"Model_details_text": "## Model Details",
"Model_how_to": "## How to Get Started with the Model",
"Model_Limits_n_Risks": "## Limitations and Biases",
"Model_uses": "## Uses",
"Model_training": "## Training",
"Model_Eval": "## Evaluation Results",
"Model_carbon": "## Environmental Impact",
"Model_cite": "## Citation Information",
"Glossary": "## Glossary",
"More_info": "## More Information",
"Model_card_authors": "## Model Card Authors",
"Model_card_contact": "## Model Card Contact",
"Technical_specs": "## Technical specifications",
"Model_examin": "## Model Examination",
}
for key in presit_states:
if presit_states[key] == text_retrieved:
return key
def main():
# st.write('here')
print(extract_it("Model_details_text"))
def extract_headers():
headers = {}
subheaders = {}
subsubheaders = {}
subsubsubheaders = {}
previous = (None, None, None, None)
for s in sorted_spans:
if merged_spans[s][1] == "# Header":
headers[s] = (sorted_spans.index(s), previous[0])
previous = (sorted_spans.index(s), previous[1], previous[2], previous[3])
if merged_spans[s][1] == "## Subheader":
subheaders[s] = (sorted_spans.index(s), previous[1])
previous = (previous[0], sorted_spans.index(s), previous[2], previous[3])
if merged_spans[s][1] == "### Subsubheader":
subsubheaders[s] = (sorted_spans.index(s), previous[2])
previous = (previous[0], previous[1], sorted_spans.index(s), previous[3])
if merged_spans[s][1] == "#### Subsubsubheader":
subsubsubheaders[s] = (sorted_spans.index(s), previous[3])
previous = (previous[0], previous[1], previous[2], sorted_spans.index(s))
return headers, subheaders, subsubheaders, subsubsubheaders
def stringify():
headers, subheaders, subsubheaders, subsubsubheaders = extract_headers()
headers_strings = {}
subheaders_strings = {}
subsubheaders_strings = {}
subsubsubheaders_strings = {}
first = None
for i in headers:
if headers[i][1] == None:
continue
sub_spans = sorted_spans[headers[i][1] : headers[i][0]]
lines = []
for x in sub_spans:
lines.append(merged_spans[x][0])
try:
name = lines[0]
except:
name = "Model Details"
lines = "".join(lines)
# print(merged_spans[i][0] + "-------------------")
# print(lines)
headers_strings[
name.replace("\n# ", "")
.replace(" ", "")
.replace(" ", "")
.replace("\n", "")
.replace("{{", "")
.replace("}}", "")
] = lines
first = i
first = None
for i in subheaders:
if subheaders[i][1] == None:
continue
sub_spans = sorted_spans[subheaders[i][1] : subheaders[i][0]]
lines = []
for x in sub_spans:
if merged_spans[x][1] == "## Subheader" and first == None:
break
elif merged_spans[x][1] == "# Header":
break
else:
lines.append(merged_spans[x][0])
try:
name = lines[0]
except:
name = "Model Details"
lines = "".join(lines)
# print(merged_spans[i][0] + "-------------------")
# print(lines)
subheaders_strings[
name.replace("\n# ", "").replace(" ", "").replace(" ", "")
] = lines
first = i
first = None
for i in subsubheaders:
if subsubheaders[i][1] == None:
continue
sub_spans = sorted_spans[subsubheaders[i][1] : subsubheaders[i][0]]
lines = []
for x in sub_spans:
if merged_spans[x][1] == "## Subheader" or (
merged_spans[x][1] == "### Subsubheader" and first == None
):
break
else:
lines.append(merged_spans[x][0])
lines = "".join(lines)
subsubheaders_strings[
merged_spans[i][0].replace("\n", "").replace("### ", "").replace(" ", "")
] = lines
first = i
for i in subsubsubheaders:
if subsubsubheaders[i][1] == None:
continue
sub_spans = sorted_spans[subsubsubheaders[i][1] : subsubsubheaders[i][0]]
lines = []
for x in sub_spans:
if (
merged_spans[x][1] == "## Subheader"
or merged_spans[x][1] == "### Subsubheader"
):
break
else:
lines.append(merged_spans[x][0])
lines = "".join(lines)
subsubsubheaders_strings[
merged_spans[i][0].replace("#### ", "").replace("**", "").replace("\n", "")
] = lines
return (
headers_strings,
subheaders_strings,
subsubheaders_strings,
subsubsubheaders_strings,
)
def extract_it(text_to_retrieve):
print("Span\t\tType\t\tText")
print("-------------------------------------")
found_subheader = False
current_subheader = " "
page_state = " "
help_text = " "
#st.write("in cs- body here")
(
headers_strings,
subheaders_strings,
subsubheaders_strings,
subsubsubheaders_strings,
) = stringify()
h_keys = list(headers_strings.keys())
sh_keys = list(subheaders_strings.keys())
ssh_keys = list(subsubheaders_strings.keys())
sssh_keys = list(subsubsubheaders_strings.keys())
needed = [
"model details",
"howto",
"limitations",
"uses",
"training",
"evaluation",
"environmental",
"citation",
"glossary",
"more information",
"authors",
"contact",
] # not sure what keyword should be used for citation, howto, and contact
# info_strings = {
# "details": "## Model Details",
# "howto": "## How to Get Started with the Model",
# "limitations": "## Limitations and Biases",
# "uses": "## Uses",
# "training": "## Training",
# "evaluation": "## Evaluation Results",
# "environmental": "## Environmental Impact",
# "citation": "## Citation Information",
# "glossary": "## Glossary",
# "more information": "## More Information",
# "authors": "## Model Card Authors",
# "contact": "## Model Card Contact",
# }
info_strings = {
"model details": "",
"howto": "",
"limitations": "",
"uses": "",
"training": "",
"evaluation": "",
"environmental": "",
"citation": "",
"glossary": "",
"more information": "",
"authors": "",
"contact": "",
}
for x in needed:
for l in h_keys:
if x in l.lower():
info_strings[x] = info_strings[x] + headers_strings[l]
for i in sh_keys:
if x in i.lower():
info_strings[x] = info_strings[x] + subheaders_strings[i]
for z in ssh_keys:
try:
if x in z.lower():
info_strings[x] = info_strings[x] + subsubheaders_strings[z]
except:
continue
for y in sssh_keys:
try:
if x in y.lower():
info_strings[x] = info_strings[x] + subsubsubheaders_strings[y]
except:
continue
extracted_info = {
"Model_details_text": info_strings["model details"],
"Model_how_to": info_strings["howto"],
"Model_Limits_n_Risks": info_strings["limitations"],
"Model_uses": info_strings["uses"],
"Model_training": info_strings["training"],
"Model_Eval": info_strings["evaluation"],
"Model_carbon": info_strings["environmental"],
"Model_cite": info_strings["citation"],
"Glossary": info_strings["glossary"],
"More_info": info_strings["more information"],
"Model_card_authors": info_strings["authors"],
"Model_card_contact": info_strings["contact"],
"Technical_specs": "## Technical specifications",
"Model_examin": "## Model Examination",
}
#text_to_retrieve = "Model_details_text"
new_t = extracted_info[text_to_retrieve] + " "
return(new_t)
if __name__ == "__main__":
main()
|