Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import os
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
from transformers import AutoModel, AutoTokenizer
|
6 |
+
import meilisearch
|
7 |
+
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained('Snowflake/snowflake-arctic-embed-m')
|
9 |
+
model = AutoModel.from_pretrained('Snowflake/snowflake-arctic-embed-m', add_pooling_layer=False)
|
10 |
+
model.eval()
|
11 |
+
|
12 |
+
cuda_available = torch.cuda.is_available()
|
13 |
+
print(f"CUDA available: {cuda_available}")
|
14 |
+
|
15 |
+
meilisearch_client = meilisearch.Client("https://edge.meilisearch.com", os.environ["MEILISEARCH_KEY"])
|
16 |
+
meilisearch_index_name = "docs-embed"
|
17 |
+
meilisearch_index = meilisearch_client.index(meilisearch_index_name)
|
18 |
+
|
19 |
+
def search_embeddings(query_text):
|
20 |
+
start_time_embedding = time.time()
|
21 |
+
query_prefix = 'Represent this sentence for searching code documentation: '
|
22 |
+
query_tokens = tokenizer(query_prefix + query_text, padding=True, truncation=True, return_tensors='pt', max_length=512)
|
23 |
+
# step1: tokenizer the query
|
24 |
+
with torch.no_grad():
|
25 |
+
# Compute token embeddings
|
26 |
+
query_embeddings = model(**query_tokens)[0][:, 0]
|
27 |
+
# normalize embeddings
|
28 |
+
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
|
29 |
+
document_embeddings_list = query_embeddings[0].tolist()
|
30 |
+
elapsed_time_embedding = time.time() - start_time_embedding
|
31 |
+
|
32 |
+
# step2: search meilisearch
|
33 |
+
start_time_meilisearch = time.time()
|
34 |
+
response = meilisearch_index.search(
|
35 |
+
"", opt_params={"vector": document_embeddings_list, "hybrid": {"semanticRatio": 1.0}, "limit": 5, "attributesToRetrieve": ["text", "source", "library"]}
|
36 |
+
)
|
37 |
+
elapsed_time_meilisearch = time.time() - start_time_meilisearch
|
38 |
+
hits = response["hits"]
|
39 |
+
|
40 |
+
# step3: present the results in markdown
|
41 |
+
md = f"Stats:\n\nembedding time: {elapsed_time_embedding:.2f}s\n\nmeilisearch time: {elapsed_time_meilisearch:.2f}s\n\n---\n\n"
|
42 |
+
for hit in hits:
|
43 |
+
text, source, library = hit["text"], hit["source"], hit["library"]
|
44 |
+
source = f"[source](https://huggingface.co/docs/{library}/{source})"
|
45 |
+
md += text + f"\n\n{source}\n\n---\n\n"
|
46 |
+
|
47 |
+
return md
|
48 |
+
|
49 |
+
|
50 |
+
demo = gr.Interface(
|
51 |
+
fn=search_embeddings,
|
52 |
+
inputs=gr.Textbox(label="enter your query", placeholder="Type Markdown here...", lines=10),
|
53 |
+
outputs=gr.Markdown(),
|
54 |
+
title="HF Docs Emebddings Explorer",
|
55 |
+
allow_flagging="never"
|
56 |
+
)
|
57 |
+
|
58 |
+
if __name__ == "__main__":
|
59 |
+
demo.launch()
|