Spaces:
Running
Running
import requests | |
import pandas as pd | |
from tqdm.auto import tqdm | |
import streamlit as st | |
from huggingface_hub import HfApi, hf_hub_download | |
from huggingface_hub.repocard import metadata_load | |
cer_langs = ["ja", "zh-CN", "zh-HK", "zh-TW"] | |
def make_clickable(model_name): | |
link = "https://huggingface.co/" + model_name | |
return f'<a target="_blank" href="{link}">{model_name}</a>' | |
def get_model_ids(): | |
api = HfApi() | |
models = api.list_models(filter="robust-speech-event") | |
model_ids = [x.modelId for x in models] | |
return model_ids | |
def get_metadata(model_id): | |
try: | |
readme_path = hf_hub_download(model_id, filename="README.md") | |
return metadata_load(readme_path) | |
except requests.exceptions.HTTPError: | |
# 404 README.md not found | |
return None | |
def parse_metric_value(value): | |
if isinstance(value, str): | |
"".join(value.split("%")) | |
try: | |
value = float(value) | |
except: # noqa: E722 | |
value = None | |
elif isinstance(value, float) and value < 1.0: | |
# assuming that WER is given in 0.xx format | |
value = 100 * value | |
elif isinstance(value, list): | |
if len(value) > 0: | |
value = value[0] | |
else: | |
value = None | |
value = round(value, 2) if value is not None else None | |
return value | |
def parse_metrics_row(meta): | |
if "model-index" not in meta or "language" not in meta: | |
return None | |
lang = meta["language"] | |
lang = lang[0] if isinstance(lang, list) else lang | |
for result in meta["model-index"][0]["results"]: | |
if "dataset" not in result or "metrics" not in result: | |
continue | |
dataset = result["dataset"]["type"] | |
if "args" not in result["dataset"]: | |
continue | |
dataset_config = result["dataset"]["args"] | |
row = {"dataset": dataset, "lang": lang} | |
for metric in result["metrics"]: | |
type = metric["type"].lower().strip() | |
if type not in ["wer", "cer"]: | |
continue | |
value = parse_metric_value(metric["value"]) | |
if value is None: | |
continue | |
if type not in row or value < row[type]: | |
# overwrite the metric if the new value is lower (e.g. with LM) | |
row[type] = value | |
if "wer" in row or "cer" in row: | |
return row | |
return None | |
def get_data(): | |
data = [] | |
model_ids = get_model_ids() | |
for model_id in tqdm(model_ids): | |
meta = get_metadata(model_id) | |
if meta is None: | |
continue | |
row = parse_metrics_row(meta) | |
if row is None: | |
continue | |
row["model_id"] = model_id | |
data.append(row) | |
return pd.DataFrame.from_records(data) | |
dataframe = get_data() | |
dataframe = dataframe.fillna("") | |
dataframe["model_id"] = dataframe["model_id"].apply(make_clickable) | |
_, col_center = st.columns([3, 6]) | |
with col_center: | |
st.image("logo.png", width=200) | |
st.markdown("# Speech Models Leaderboard") | |
lang = st.selectbox( | |
"Language", | |
sorted(dataframe["lang"].unique()), | |
index=0, | |
) | |
lang_df = dataframe[dataframe.lang == lang] | |
dataset = st.selectbox( | |
"Dataset", | |
sorted(lang_df["dataset"].unique()), | |
index=0, | |
) | |
dataset_df = lang_df[lang_df.dataset == dataset] | |
if lang in cer_langs: | |
dataset_df = dataset_df[["model_id", "cer"]] | |
dataset_df.sort_values("cer", inplace=True) | |
else: | |
dataset_df = dataset_df[["model_id", "wer"]] | |
dataset_df.sort_values("wer", inplace=True) | |
dataset_df.rename( | |
columns={ | |
"model_id": "Model", | |
"wer": "WER", | |
"cer": "CER", | |
}, | |
inplace=True, | |
) | |
st.write(dataset_df.to_html(escape=False, index=None), unsafe_allow_html=True) | |