|
|
|
|
|
import streamlit as st |
|
|
|
import os |
|
|
|
from io import StringIO |
|
import base64 |
|
import json |
|
import pandas as pd |
|
|
|
pd.options.mode.chained_assignment = None |
|
|
|
import numpy as np |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
from filtering import LoadParameters, ModifyingDocuments, Filtering |
|
from languages_id import langs_id |
|
|
|
|
|
class Visualization_for_lang: |
|
def __init__( |
|
self, |
|
path_data, |
|
lang, |
|
num_docs, |
|
num_docs_for_words, |
|
max_len_text_display, |
|
lang_dataset_id, |
|
path_fasttext_model, |
|
path_sentencepiece_model, |
|
path_kenlm_model, |
|
): |
|
self.path_data = path_data |
|
self.lang = lang |
|
self.num_docs = num_docs |
|
self.num_docs_for_words = num_docs_for_words |
|
self.max_len_text_display = max_len_text_display |
|
|
|
self.lang_dataset_id = lang_dataset_id |
|
self.param = LoadParameters.load_parameters(lang_dataset_id) |
|
self.stopwords = LoadParameters.load_stopwords(lang_dataset_id) |
|
self.flagged_words = LoadParameters.load_flagged_words(lang_dataset_id) |
|
self.model_lang_id = LoadParameters.load_model_lang_id( |
|
lang_dataset_id, path_fasttext_model |
|
) |
|
self.sentencepiece_model = LoadParameters.load_sentencepiece_model( |
|
lang_dataset_id, path_sentencepiece_model |
|
) |
|
self.sentencepiece_model_tok = ( |
|
self.sentencepiece_model if self.param["tokenization"] else None |
|
) |
|
self.kenlm_model = LoadParameters.load_kenlm_model( |
|
lang_dataset_id, path_kenlm_model |
|
) |
|
|
|
def set_title(self): |
|
st.title(f"Filtering visualization for {self.lang}") |
|
|
|
def open_data(self): |
|
with open(self.path_data) as json_file: |
|
data = json.load(json_file) |
|
|
|
self.num_docs = min(self.num_docs, len(data)) |
|
self.num_docs_for_words = min(self.num_docs_for_words, len(data)) |
|
|
|
if "words" in data[0]: |
|
words = [doc["words"] for doc in data[: self.num_docs_for_words]] |
|
words = [word for doc in words for word in doc] |
|
self.words = pd.DataFrame(words) |
|
else: |
|
self.words = None |
|
|
|
docs = data[: self.num_docs] |
|
for doc in docs: |
|
if not (self.words is None): |
|
del doc["words"] |
|
if len(doc["text"]) > self.max_len_text_display: |
|
doc["text"] = ( |
|
doc["text"][: self.max_len_text_display] |
|
+ " [...] [THIS LONG TEXT HAS BEEN TRUNCATED FOR DISPLAY REASONS]" |
|
) |
|
self.docs_checkpoint = pd.DataFrame(docs) |
|
self.docs = self.docs_checkpoint |
|
|
|
@staticmethod |
|
def print_discarded_by_cond(cond): |
|
st.caption( |
|
f"{(len(cond) - np.sum(1*cond)) / len(cond) * 100:.2f}% of the total is discarded with this filter." |
|
) |
|
|
|
@staticmethod |
|
def plot_hist(dataframe, key, num_bins=50): |
|
checkbox = st.checkbox( |
|
"Diplay distribution", value=True, key=f"display_distribution_{key[0]}" |
|
) |
|
if checkbox: |
|
fig, ax = plt.subplots() |
|
val = dataframe[key[0]].values |
|
if np.median(val) != 0: |
|
val = val[ |
|
abs(val - np.median(val)) |
|
< 9 * np.median(np.absolute(val - np.median(val))) |
|
] |
|
ax.hist(val, bins=num_bins, density=True) |
|
ax.set_title(" ".join(key[0].split("_"))) |
|
ax.axvline(x=key[1], color="r", linestyle="dashed") |
|
st.pyplot(fig) |
|
|
|
@staticmethod |
|
def display_dataset(dataframe, cond, description, type_of_examples): |
|
displayed_examples = dataframe.loc[cond] |
|
st.subheader( |
|
f"{description}: {len(displayed_examples)} {type_of_examples} ({len(displayed_examples) / len(dataframe.index) * 100:.2f}%)" |
|
) |
|
st.markdown( |
|
"Click on a column to sort by it, place the cursor on the text to display it." |
|
) |
|
st.dataframe(displayed_examples) |
|
|
|
def filtering_of_docs(self): |
|
def set_sliders(): |
|
columns = list(self.docs) |
|
keys = [] |
|
conds = {} |
|
|
|
def get_cond(key, cutoff, max_cutoff): |
|
if max_cutoff: |
|
return self.docs[key] <= cutoff |
|
return self.docs[key] >= cutoff |
|
|
|
if "number_words" in columns: |
|
with st.sidebar.expander("Number of words"): |
|
cutoff_def = "If the number of words of a document is lower than this number, the document is removed." |
|
max_nb_words = int(np.max(self.docs["number_words"])) + 1 |
|
cutoff_min_number_words = st.slider( |
|
cutoff_def, 0, min(max_nb_words, 500), 0 |
|
) |
|
new_key = ("number_words", cutoff_min_number_words, False) |
|
keys.append(new_key) |
|
Visualization_for_lang.plot_hist(self.docs, new_key) |
|
cond_1 = get_cond(new_key[0], new_key[1], new_key[2]) |
|
Visualization_for_lang.print_discarded_by_cond(cond_1) |
|
|
|
cutoff_def = "If the number of words of a document is higher than this number, the document is removed." |
|
cutoff_max_number_words = st.slider( |
|
cutoff_def, 0, max_nb_words, max_nb_words |
|
) |
|
new_key = ("number_words", cutoff_max_number_words, True) |
|
keys.append(new_key) |
|
cond_2 = get_cond(new_key[0], new_key[1], new_key[2]) |
|
Visualization_for_lang.print_discarded_by_cond(cond_2) |
|
|
|
conds["number_words"] = [cond_1, cond_2] |
|
|
|
if "character_repetition_ratio" in columns: |
|
with st.sidebar.expander("Character repetition ratio"): |
|
val_repetitions_lengths = list( |
|
self.docs["character_repetition_ratio"].iloc[0].keys() |
|
) |
|
default_index = ( |
|
val_repetitions_lengths.index("10") |
|
if "10" in val_repetitions_lengths |
|
else 0 |
|
) |
|
label_selectbox = "Length of repetitions in characters (that will influence the character repetition ratio)." |
|
repetitions_length = st.selectbox( |
|
label=label_selectbox, |
|
options=val_repetitions_lengths, |
|
index=default_index, |
|
) |
|
st.caption( |
|
"Choosing a higher or lower number does not mean that the filtering " |
|
"is stronger or weaker. Be careful, choosing a low number (below 5 for languages like English) " |
|
"tends to associate a high character repetition ratio to very long documents (like book chapters), but with " |
|
"few or no repetitions, simply because their length gives them more diversity, and we do " |
|
"not want to discard such documents. It is generally better to increase this number, so that false " |
|
"positives are very short documents (which we want to delete anyway) rather than long ones. However, " |
|
"a low number can be useful for Chinese, where a character can designate a whole word." |
|
) |
|
self.docs["character_repetition_ratio"] = self.docs_checkpoint[ |
|
"character_repetition_ratio" |
|
] |
|
for i in range(len(self.docs["character_repetition_ratio"])): |
|
self.docs["character_repetition_ratio"].iloc[i] = self.docs[ |
|
"character_repetition_ratio" |
|
].iloc[i][repetitions_length] |
|
|
|
cutoff_def = "If the character repetition ratio of a document is higher than this number, the document is removed." |
|
cutoff_character_repetition_ratio = st.slider( |
|
cutoff_def, 0.0, 1.0, 1.0, step=0.01 |
|
) |
|
new_key = ( |
|
"character_repetition_ratio", |
|
cutoff_character_repetition_ratio, |
|
True, |
|
repetitions_length, |
|
) |
|
keys.append(new_key) |
|
Visualization_for_lang.plot_hist(self.docs, new_key) |
|
cond = get_cond(new_key[0], new_key[1], new_key[2]) |
|
Visualization_for_lang.print_discarded_by_cond(cond) |
|
conds["character_repetition_ratio"] = [cond] |
|
|
|
if "word_repetition_ratio" in columns: |
|
with st.sidebar.expander("Word repetition ratio"): |
|
val_repetitions_lengths = list( |
|
self.docs["word_repetition_ratio"].iloc[0].keys() |
|
) |
|
default_index = ( |
|
val_repetitions_lengths.index("5") |
|
if "5" in val_repetitions_lengths |
|
else 0 |
|
) |
|
label_selectbox = "Length of repetitions in words (that will influence the word repetition ratio)." |
|
repetitions_length = st.selectbox( |
|
label=label_selectbox, |
|
options=val_repetitions_lengths, |
|
index=default_index, |
|
) |
|
st.caption( |
|
"Choosing a higher or lower number does not mean that the filtering " |
|
"is stronger or weaker. Be careful, choosing a low number (like 3) could " |
|
"tend to associate a high word repetition ratio to very long documents (like book chapters), but with " |
|
"few or no repetitions, simply because their length gives them more diversity, and we do " |
|
"not want to discard such documents. It is generally better to increase a bit this number, so that false " |
|
"positives are very short documents (which we want to delete anyway) rather than long ones." |
|
) |
|
self.docs["word_repetition_ratio"] = self.docs_checkpoint[ |
|
"word_repetition_ratio" |
|
] |
|
for i in range(len(self.docs["word_repetition_ratio"])): |
|
self.docs["word_repetition_ratio"].iloc[i] = self.docs[ |
|
"word_repetition_ratio" |
|
].iloc[i][repetitions_length] |
|
|
|
cutoff_def = "If the word repetition ratio of a document is higher than this number, the document is removed." |
|
cutoff_word_repetition_ratio = st.slider( |
|
cutoff_def, 0.0, 1.0, 1.0, step=0.01 |
|
) |
|
new_key = ( |
|
"word_repetition_ratio", |
|
cutoff_word_repetition_ratio, |
|
True, |
|
repetitions_length, |
|
) |
|
keys.append(new_key) |
|
Visualization_for_lang.plot_hist(self.docs, new_key) |
|
cond = get_cond(new_key[0], new_key[1], new_key[2]) |
|
Visualization_for_lang.print_discarded_by_cond(cond) |
|
conds["word_repetition_ratio"] = [cond] |
|
|
|
if "special_characters_ratio" in columns: |
|
with st.sidebar.expander("Special characters ratio"): |
|
cutoff_def = "If the special characters ratio of a document is higher than this number, the document is removed." |
|
cutoff_special_characters_ratio = st.slider( |
|
cutoff_def, 0.0, 1.0, 1.0, step=0.01 |
|
) |
|
new_key = ( |
|
"special_characters_ratio", |
|
cutoff_special_characters_ratio, |
|
True, |
|
) |
|
keys.append(new_key) |
|
Visualization_for_lang.plot_hist(self.docs, new_key) |
|
cond = get_cond(new_key[0], new_key[1], new_key[2]) |
|
Visualization_for_lang.print_discarded_by_cond(cond) |
|
conds["special_characters_ratio"] = [cond] |
|
|
|
if "stopwords_ratio" in columns: |
|
with st.sidebar.expander("Stop words ratio"): |
|
stopwords_file = st.file_uploader( |
|
"Upload your own list of stop words (one per line). If there is none, the default one is used." |
|
) |
|
if stopwords_file: |
|
new_stopwords = StringIO( |
|
stopwords_file.getvalue().decode("utf-8") |
|
).read() |
|
new_stopwords = set(new_stopwords.split("\n")) |
|
self.docs["stopwords_ratio"] = self.docs_checkpoint[ |
|
"stopwords_ratio" |
|
] |
|
for i in range(len(self.docs["stopwords_ratio"])): |
|
self.docs["stopwords_ratio"].iloc[ |
|
i |
|
] = Filtering.compute_stopwords_ratio( |
|
self.docs["text"].iloc[i], |
|
self.sentencepiece_model_tok, |
|
self.param["strip_characters"], |
|
self.param["cond_words_augmentation"], |
|
self.param["words_augmentation_group_sizes"], |
|
self.param["words_augmentation_join_char"], |
|
new_stopwords, |
|
) |
|
cutoff_def = "If the stop words ratio of a document is lower than this number, the document is removed." |
|
cutoff_stopwords_ratio = st.slider( |
|
cutoff_def, 0.0, 1.0, 0.0, step=0.01 |
|
) |
|
new_key = ("stopwords_ratio", cutoff_stopwords_ratio, False) |
|
keys.append(new_key) |
|
Visualization_for_lang.plot_hist(self.docs, new_key) |
|
cond = get_cond(new_key[0], new_key[1], new_key[2]) |
|
Visualization_for_lang.print_discarded_by_cond(cond) |
|
conds["stopwords_ratio"] = [cond] |
|
|
|
if "flagged_words_ratio" in columns: |
|
with st.sidebar.expander("Flagged words ratio"): |
|
flagged_words_file = st.file_uploader( |
|
"Upload your own list of flagged words (one per line). If there is none, the default one is used." |
|
) |
|
if flagged_words_file: |
|
new_flagged_words = StringIO( |
|
flagged_words_file.getvalue().decode("utf-8") |
|
).read() |
|
new_flagged_words = set(new_flagged_words.split("\n")) |
|
self.docs["flagged_words_ratio"] = self.docs_checkpoint[ |
|
"flagged_words_ratio" |
|
] |
|
for i in range(len(self.docs["flagged_words_ratio"])): |
|
self.docs["flagged_words_ratio"].iloc[ |
|
i |
|
] = Filtering.compute_flagged_words_ratio( |
|
self.docs["text"].iloc[i], |
|
self.sentencepiece_model_tok, |
|
self.param["strip_characters"], |
|
self.param["cond_words_augmentation"], |
|
self.param["words_augmentation_group_sizes"], |
|
self.param["words_augmentation_join_char"], |
|
new_flagged_words, |
|
) |
|
cutoff_def = "If the flagged words ratio of a document is higher than this number, the document is removed." |
|
max_fwr = np.max(self.docs["flagged_words_ratio"]) |
|
max_fwr = np.ceil(max_fwr * 1000) / 1000 |
|
max_fwr = float(max_fwr) |
|
cutoff_flagged_words_ratio = st.slider( |
|
cutoff_def, |
|
0.000, |
|
max_fwr, |
|
max_fwr, |
|
step=0.001, |
|
format="%f", |
|
) |
|
new_key = ("flagged_words_ratio", cutoff_flagged_words_ratio, True) |
|
keys.append(new_key) |
|
Visualization_for_lang.plot_hist(self.docs, new_key) |
|
cond = get_cond(new_key[0], new_key[1], new_key[2]) |
|
Visualization_for_lang.print_discarded_by_cond(cond) |
|
conds["flagged_words_ratio"] = [cond] |
|
|
|
if "lang_id_score" in columns: |
|
with st.sidebar.expander("Language ID confidence score"): |
|
cutoff_def = "If the confidence score for the language identification prediction of a document is lower than this number, the document is removed." |
|
cutoff_lang_id_score = st.slider( |
|
cutoff_def, 0.0, 1.0, 0.0, step=0.01 |
|
) |
|
new_key = ("lang_id_score", cutoff_lang_id_score, False) |
|
keys.append(new_key) |
|
Visualization_for_lang.plot_hist(self.docs, new_key) |
|
cond = get_cond(new_key[0], new_key[1], new_key[2]) |
|
Visualization_for_lang.print_discarded_by_cond(cond) |
|
conds["lang_id_score"] = [cond] |
|
|
|
if "perplexity_score" in columns: |
|
with st.sidebar.expander("Perplexity score"): |
|
cutoff_def = "If the perplexity score of a document is higher than this number, the document is removed." |
|
max_pp = int(np.max(self.docs["perplexity_score"])) + 1 |
|
cutoff_perplexity_score = st.slider(cutoff_def, 0, max_pp, max_pp) |
|
new_key = ("perplexity_score", cutoff_perplexity_score, True) |
|
keys.append(new_key) |
|
Visualization_for_lang.plot_hist(self.docs, new_key) |
|
cond = get_cond(new_key[0], new_key[1], new_key[2]) |
|
Visualization_for_lang.print_discarded_by_cond(cond) |
|
conds["perplexity_score"] = [cond] |
|
|
|
return keys, conds |
|
|
|
with st.expander( |
|
f"Filtering on documents, for {self.num_docs} {self.lang} documents" |
|
): |
|
st.header( |
|
f"Filtering on documents, for {self.num_docs} {self.lang} documents" |
|
) |
|
|
|
if "labels" in list(self.docs): |
|
chosen_label = st.selectbox( |
|
label="Consider only documents that include the following label", |
|
options=[ |
|
"All", |
|
"NA: Narrative", |
|
"IN: Informational Description", |
|
"OP: Opinion", |
|
"ID: Interactive Discussion", |
|
"HI: How-to/Instruction", |
|
"IP: Informational Persuasion", |
|
"LY: Lyrical", |
|
"SP: Spoken", |
|
], |
|
) |
|
chosen_label = chosen_label.split(":")[0] |
|
if chosen_label != "All": |
|
cond_label = list( |
|
self.docs["labels"].apply( |
|
lambda x: True if chosen_label in x else False |
|
) |
|
) |
|
self.docs = self.docs[cond_label] |
|
|
|
if self.docs.empty: |
|
st.markdown( |
|
"No document to display, please try to select a different label." |
|
) |
|
self.keys = [] |
|
self.parameters = [] |
|
|
|
else: |
|
st.sidebar.subheader("Parameters of the filtering on documents") |
|
self.keys, conds = set_sliders() |
|
self.parameters = self.keys * 1 |
|
|
|
all_conds = [ |
|
subcond for cond in list(conds.values()) for subcond in cond |
|
] |
|
all_conds = np.all(all_conds, axis=0) |
|
|
|
Visualization_for_lang.display_dataset( |
|
self.docs, np.invert(all_conds), "Discarded documents", "docs" |
|
) |
|
|
|
|
|
display_discarded_documents_by_filter = st.checkbox( |
|
"Display discarded documents by filter" |
|
) |
|
|
|
if display_discarded_documents_by_filter: |
|
columns = list(self.docs) |
|
|
|
if "number_words" in columns: |
|
cond_filter = np.invert(np.all(conds["number_words"], axis=0)) |
|
Visualization_for_lang.display_dataset( |
|
self.docs, |
|
cond_filter, |
|
"Discarded documents for the filter on the number of words", |
|
"docs", |
|
) |
|
|
|
if "character_repetition_ratio" in columns: |
|
cond_filter = np.invert( |
|
np.all(conds["character_repetition_ratio"], axis=0) |
|
) |
|
Visualization_for_lang.display_dataset( |
|
self.docs, |
|
cond_filter, |
|
"Discarded documents for the filter on the character repetition ratio", |
|
"docs", |
|
) |
|
|
|
if "word_repetition_ratio" in columns: |
|
cond_filter = np.invert( |
|
np.all(conds["word_repetition_ratio"], axis=0) |
|
) |
|
Visualization_for_lang.display_dataset( |
|
self.docs, |
|
cond_filter, |
|
"Discarded documents for the filter on the word repetition ratio", |
|
"docs", |
|
) |
|
|
|
if "special_characters_ratio" in columns: |
|
cond_filter = np.invert( |
|
np.all(conds["special_characters_ratio"], axis=0) |
|
) |
|
Visualization_for_lang.display_dataset( |
|
self.docs, |
|
cond_filter, |
|
"Discarded documents for the filter on the special characters ratio", |
|
"docs", |
|
) |
|
|
|
if "stopwords_ratio" in columns: |
|
cond_filter = np.invert( |
|
np.all(conds["stopwords_ratio"], axis=0) |
|
) |
|
Visualization_for_lang.display_dataset( |
|
self.docs, |
|
cond_filter, |
|
"Discarded documents for the filter on the stop words ratio", |
|
"docs", |
|
) |
|
|
|
if "flagged_words_ratio" in columns: |
|
cond_filter = np.invert( |
|
np.all(conds["flagged_words_ratio"], axis=0) |
|
) |
|
Visualization_for_lang.display_dataset( |
|
self.docs, |
|
cond_filter, |
|
"Discarded documents for the filter on the flagged words ratio", |
|
"docs", |
|
) |
|
|
|
if "lang_id_score" in columns: |
|
cond_filter = np.invert(np.all(conds["lang_id_score"], axis=0)) |
|
Visualization_for_lang.display_dataset( |
|
self.docs, |
|
cond_filter, |
|
"Discarded documents for the filter on the language identification confidence score", |
|
"docs", |
|
) |
|
|
|
if "perplexity_score" in columns: |
|
cond_filter = np.invert( |
|
np.all(conds["perplexity_score"], axis=0) |
|
) |
|
Visualization_for_lang.display_dataset( |
|
self.docs, |
|
cond_filter, |
|
"Discarded documents for the filter on the perplexity score", |
|
"docs", |
|
) |
|
|
|
Visualization_for_lang.display_dataset( |
|
self.docs, all_conds, "Retained documents", "docs" |
|
) |
|
|
|
st.header("Download data") |
|
|
|
with open(self.path_data) as json_file: |
|
btn = st.download_button( |
|
label="Download data as json", |
|
data=json_file, |
|
file_name="data.json", |
|
) |
|
|
|
def filtering_of_words(self): |
|
if not (self.words is None): |
|
columns = list(self.words) |
|
|
|
st.sidebar.subheader("Parameter of the filtering on words") |
|
|
|
conds_words = {} |
|
|
|
if "len_word" in columns: |
|
with st.sidebar.expander("Length of words"): |
|
cutoff_def = "If the length of a word is higher than this number, the word is removed." |
|
max_len_word = min(int(np.max(self.words["len_word"])) + 1, 200) |
|
cutoff_word = st.slider(cutoff_def, 0, max_len_word, max_len_word) |
|
new_key = ("len_word", cutoff_word, True) |
|
self.parameters.append(new_key) |
|
Visualization_for_lang.plot_hist(self.words, new_key) |
|
cond_len_words = self.words["len_word"] <= cutoff_word |
|
Visualization_for_lang.print_discarded_by_cond(cond_len_words) |
|
conds_words["len_word"] = cond_len_words |
|
|
|
if "incorrect_substrings" in columns: |
|
with st.sidebar.expander("Words with incorrect substrings"): |
|
incorrect_substrings = st.checkbox( |
|
"Remove words with incorrect substrings." |
|
) |
|
self.parameters.append( |
|
("incorrect_substrings", incorrect_substrings) |
|
) |
|
|
|
checkbox = st.checkbox( |
|
"Diplay distribution", |
|
value=True, |
|
key="display_distribution_incorrect_substrings", |
|
) |
|
if checkbox: |
|
incor_sub = np.array(self.words["incorrect_substrings"]) * 1 |
|
with_incor_sub = np.sum(incor_sub) |
|
without_incor_sub = len(incor_sub) - with_incor_sub |
|
st.markdown( |
|
f"Number of words with incorrect substrings: {with_incor_sub}" |
|
) |
|
st.markdown( |
|
f"Number of words without incorrect substrings: {without_incor_sub}" |
|
) |
|
|
|
if incorrect_substrings: |
|
cond_incorrect_substrings = np.invert( |
|
self.words["incorrect_substrings"] |
|
) |
|
else: |
|
cond_incorrect_substrings = np.array( |
|
[ |
|
True |
|
for i in range(len(self.words["incorrect_substrings"])) |
|
] |
|
) |
|
Visualization_for_lang.print_discarded_by_cond( |
|
cond_incorrect_substrings |
|
) |
|
conds_words["incorrect_substrings"] = cond_incorrect_substrings |
|
|
|
all_conds_words = np.all(list(conds_words.values()), axis=0) |
|
|
|
with st.expander( |
|
f"Filtering on words, for {self.num_docs_for_words} {self.lang} documents" |
|
): |
|
st.header( |
|
f"Filtering on words, for {self.num_docs_for_words} {self.lang} documents" |
|
) |
|
|
|
st.markdown( |
|
f"Since the number of words is way larger than the number of documents, " |
|
f"we consider in this section words for only {self.num_docs_for_words} documents." |
|
) |
|
|
|
Visualization_for_lang.display_dataset( |
|
self.words, np.invert(all_conds_words), "Discarded words", "words" |
|
) |
|
|
|
|
|
display_discarded_words_by_filter = st.checkbox( |
|
"Display discarded words by filter" |
|
) |
|
|
|
if display_discarded_words_by_filter: |
|
|
|
if "len_word" in columns: |
|
cond_filter = np.invert(conds_words["len_word"]) |
|
Visualization_for_lang.display_dataset( |
|
self.words, |
|
cond_filter, |
|
"Discarded words for the filter on length", |
|
"words", |
|
) |
|
|
|
if "incorrect_substrings" in columns: |
|
cond_filter = np.invert(conds_words["incorrect_substrings"]) |
|
Visualization_for_lang.display_dataset( |
|
self.words, |
|
cond_filter, |
|
"Discarded words for the filter on incorrect substrings", |
|
"words", |
|
) |
|
|
|
Visualization_for_lang.display_dataset( |
|
self.words, all_conds_words, "Retained words", "words" |
|
) |
|
|
|
def download_parameters(self): |
|
st.sidebar.subheader("Download parameters") |
|
btn = st.sidebar.download_button( |
|
label="Download current parameters as json", |
|
data=json.dumps(self.parameters), |
|
file_name=f"parameters_{self.lang_dataset_id}.json", |
|
) |
|
|
|
""" |
|
def plot_zipf_law(self): |
|
if not (self.words is None): |
|
st.header("Zipf's Law") |
|
|
|
display_zipf_law = st.checkbox("Display Zipf's Law") |
|
|
|
if display_zipf_law: |
|
|
|
freq_words = {} |
|
for _, row in self.words.iterrows(): |
|
freq_words[row["word"]] = freq_words.get(row["word"], 0) + 1 |
|
freq_words = np.array(list(freq_words.values())) |
|
freq_words = -np.sort(-freq_words) |
|
|
|
fig, ax = plt.subplots() |
|
ax.loglog(freq_words) |
|
ax.set_title("Zipf's Law") |
|
ax.set_xlabel("$i$-th most frequent word") |
|
ax.set_ylabel("frequency in the documents") |
|
st.pyplot(fig) |
|
""" |
|
|
|
def analyse_personal_doc(self): |
|
with st.expander("Analyse your own document"): |
|
st.header("Analyse your own document") |
|
|
|
personal_doc = st.text_area( |
|
label="Paste here the document you want to analyse", |
|
value="", |
|
max_chars=10000, |
|
) |
|
|
|
is_discarded = False |
|
|
|
def is_doc_discarded(key, score): |
|
if key[2]: |
|
return score > key[1] |
|
else: |
|
return score < key[1] |
|
|
|
if personal_doc: |
|
|
|
st.markdown("Statistics of the document:") |
|
|
|
for key in self.keys: |
|
if key[0] == "number_words": |
|
words = ModifyingDocuments.get_words_from_document( |
|
personal_doc, |
|
self.sentencepiece_model_tok, |
|
lower_case=False, |
|
strip_characters=self.param["strip_characters"], |
|
) |
|
if key[2]: |
|
st.markdown(f"Number of words: {len(words)}") |
|
if is_doc_discarded(key, len(words)): |
|
is_discarded = True |
|
|
|
elif key[0] == "character_repetition_ratio": |
|
character_repetition_ratio = ( |
|
Filtering.compute_character_repetition_ratio( |
|
personal_doc, int(key[3]) |
|
) |
|
) |
|
character_repetition_ratio = round( |
|
character_repetition_ratio, 3 |
|
) |
|
st.markdown( |
|
f"Character repetition ratio: {character_repetition_ratio}" |
|
) |
|
if is_doc_discarded(key, character_repetition_ratio): |
|
is_discarded = True |
|
|
|
elif key[0] == "word_repetition_ratio": |
|
word_repetition_ratio = Filtering.compute_word_repetition_ratio( |
|
personal_doc, |
|
self.sentencepiece_model_tok, |
|
self.param["strip_characters"], |
|
int(key[3]), |
|
) |
|
word_repetition_ratio = round(word_repetition_ratio, 3) |
|
st.markdown(f"Word repetition ratio: {word_repetition_ratio}") |
|
if is_doc_discarded(key, word_repetition_ratio): |
|
is_discarded = True |
|
|
|
elif key[0] == "special_characters_ratio": |
|
special_characters_ratio = ( |
|
Filtering.compute_special_characters_ratio( |
|
personal_doc, self.param["special_characters"] |
|
) |
|
) |
|
special_characters_ratio = round(special_characters_ratio, 3) |
|
st.markdown( |
|
f"Special characters ratio: {special_characters_ratio}" |
|
) |
|
if is_doc_discarded(key, special_characters_ratio): |
|
is_discarded = True |
|
|
|
elif key[0] == "stopwords_ratio": |
|
stopwords_ratio = Filtering.compute_stopwords_ratio( |
|
personal_doc, |
|
self.sentencepiece_model_tok, |
|
self.param["strip_characters"], |
|
self.param["cond_words_augmentation"], |
|
self.param["words_augmentation_group_sizes"], |
|
self.param["words_augmentation_join_char"], |
|
self.stopwords, |
|
) |
|
stopwords_ratio = round(stopwords_ratio, 3) |
|
st.markdown(f"Stop words ratio: {stopwords_ratio}") |
|
if is_doc_discarded(key, stopwords_ratio): |
|
is_discarded = True |
|
|
|
elif key[0] == "flagged_words_ratio": |
|
flagged_words_ratio = Filtering.compute_flagged_words_ratio( |
|
personal_doc, |
|
self.sentencepiece_model_tok, |
|
self.param["strip_characters"], |
|
self.param["cond_words_augmentation"], |
|
self.param["words_augmentation_group_sizes"], |
|
self.param["words_augmentation_join_char"], |
|
self.flagged_words, |
|
) |
|
flagged_words_ratio = round(flagged_words_ratio, 3) |
|
st.markdown(f"Flagged words ratio: {flagged_words_ratio}") |
|
if is_doc_discarded(key, flagged_words_ratio): |
|
is_discarded = True |
|
|
|
elif key[0] == "lang_id_score": |
|
( |
|
lang_pred_dataset_id, |
|
lang_id_score, |
|
) = Filtering.compute_lang_id_pred_score( |
|
personal_doc, self.model_lang_id |
|
) |
|
lang_id_score = round(lang_id_score, 3) |
|
st.markdown( |
|
f"Language identification confidence score: {lang_id_score}" |
|
) |
|
if is_doc_discarded(key, flagged_words_ratio) or ( |
|
self.lang_dataset_id != lang_pred_dataset_id |
|
): |
|
is_discarded = True |
|
|
|
elif key[0] == "perplexity_score": |
|
perplexity_score = Filtering.compute_perplexity_score( |
|
personal_doc, |
|
self.sentencepiece_model, |
|
self.kenlm_model, |
|
) |
|
perplexity_score = round(perplexity_score, 3) |
|
st.markdown(f"Perplexity score: {perplexity_score}") |
|
if is_doc_discarded(key, perplexity_score): |
|
is_discarded = True |
|
|
|
is_discarded = "" if is_discarded else "not " |
|
st.markdown( |
|
f"With the current filtering parameters, this document **is {is_discarded}discarded**." |
|
) |
|
|
|
def visualization_for_lang(self): |
|
self.set_title() |
|
self.open_data() |
|
self.filtering_of_docs() |
|
self.filtering_of_words() |
|
self.download_parameters() |
|
self.analyse_personal_doc() |
|
|
|
|
|
class Visualization: |
|
def __init__(self, path_instructions, param_visu_langs): |
|
self.path_instructions = path_instructions |
|
self.param_visu_langs = param_visu_langs |
|
|
|
def preamble(self): |
|
def get_binary_file_downloader_html(bin_file, file_label="File"): |
|
with open(bin_file, "rb") as f: |
|
data = f.read() |
|
bin_str = base64.b64encode(data).decode() |
|
href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">{file_label}</a>' |
|
return href |
|
|
|
st.markdown( |
|
"Before diving into this demo, you might want to take a look at how the filtering pipeline looks like in more detail in this " |
|
+ get_binary_file_downloader_html( |
|
self.path_instructions, |
|
"pdf", |
|
) |
|
+ ".", |
|
unsafe_allow_html=True, |
|
) |
|
|
|
def warning_preamble(self): |
|
st.markdown( |
|
"This demo can be a little slow, and only allows you to process up to 5000 documents " |
|
"for a decent speed. If you want to display up to three times more documents and have " |
|
"a faster visualization, we invite you to run this " |
|
"[code](https://github.com/bigscience-workshop/data-preparation/tree/main/preprocessing/filtering/visualization) " |
|
"on your computer." |
|
) |
|
|
|
def choose_lang(self): |
|
options = [ |
|
self.param_visu_langs[lang_dataset_id]["lang"] |
|
for lang_dataset_id in self.param_visu_langs |
|
] |
|
index = options.index("English") if ("English" in options) else 0 |
|
lang_chosen = st.selectbox( |
|
label="Select the language for visualization", |
|
options=options, |
|
index=index, |
|
) |
|
if lang_chosen != "None": |
|
lang_chosen_dataset_id = langs_id.loc[ |
|
langs_id["lang"] == lang_chosen, "dataset_id" |
|
].iloc[0] |
|
visualization_for_lang = Visualization_for_lang( |
|
path_data=self.param_visu_langs[lang_chosen_dataset_id]["path_data"], |
|
lang=self.param_visu_langs[lang_chosen_dataset_id]["lang"], |
|
num_docs=self.param_visu_langs[lang_chosen_dataset_id]["num_docs"], |
|
num_docs_for_words=self.param_visu_langs[lang_chosen_dataset_id][ |
|
"num_docs_for_words" |
|
], |
|
max_len_text_display=self.param_visu_langs[lang_chosen_dataset_id][ |
|
"max_len_text_display" |
|
], |
|
lang_dataset_id=self.param_visu_langs[lang_chosen_dataset_id][ |
|
"lang_dataset_id" |
|
], |
|
path_fasttext_model=self.param_visu_langs[lang_chosen_dataset_id][ |
|
"path_fasttext_model" |
|
], |
|
path_sentencepiece_model=self.param_visu_langs[lang_chosen_dataset_id][ |
|
"path_sentencepiece_model" |
|
], |
|
path_kenlm_model=self.param_visu_langs[lang_chosen_dataset_id][ |
|
"path_kenlm_model" |
|
], |
|
) |
|
visualization_for_lang.visualization_for_lang() |
|
|
|
def visualization(self): |
|
self.preamble() |
|
self.warning_preamble() |
|
self.choose_lang() |
|
|
|
|
|
path_instructions = "./explanation_filtering_pipeline.pdf" |
|
|
|
param_visu_langs = { |
|
lang_dataset_id: { |
|
"path_data": f"./{lang_dataset_id}_examples_with_stats.json", |
|
"lang": langs_id.loc[langs_id["dataset_id"] == lang_dataset_id, "lang"].iloc[0], |
|
"num_docs": 5000, |
|
"num_docs_for_words": 500, |
|
"max_len_text_display": 10000, |
|
"lang_dataset_id": lang_dataset_id, |
|
"path_fasttext_model": "./lid.176.bin", |
|
"path_sentencepiece_model": f"./{lang_dataset_id}.sp.model", |
|
"path_kenlm_model": f"./{lang_dataset_id}.arpa.bin", |
|
} |
|
for lang_dataset_id in ["eu", "ca", "zh", "en", "fr", "id", "pt", "es"] |
|
} |
|
|
|
visualization = Visualization(path_instructions, param_visu_langs) |
|
visualization.visualization() |
|
|