HugoLaurencon
commited on
Commit
•
611e98e
1
Parent(s):
58d483d
chinese visu
Browse files- .gitattributes +2 -0
- app.py +117 -71
- en_examples_with_stats.json +3 -0
- zh_examples_with_stats.json +3 -0
.gitattributes
CHANGED
@@ -27,3 +27,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
*.jsonl filter=lfs diff=lfs merge=lfs -text
|
29 |
*.json filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
*.jsonl filter=lfs diff=lfs merge=lfs -text
|
29 |
*.json filter=lfs diff=lfs merge=lfs -text
|
30 |
+
en_examples_with_stats.json filter=lfs diff=lfs merge=lfs -text
|
31 |
+
zh_examples_with_stats.json filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -15,7 +15,13 @@ import matplotlib.pyplot as plt
|
|
15 |
|
16 |
class Visualization:
|
17 |
def __init__(
|
18 |
-
self,
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
):
|
20 |
self.path_instructions = path_instructions
|
21 |
self.path_data = path_data
|
@@ -25,17 +31,25 @@ class Visualization:
|
|
25 |
self.max_len_text_display = max_len_text_display
|
26 |
|
27 |
def preamble(self):
|
28 |
-
st.markdown(
|
|
|
|
|
29 |
|
30 |
-
def get_binary_file_downloader_html(bin_file, file_label=
|
31 |
-
with open(bin_file,
|
32 |
data = f.read()
|
33 |
bin_str = base64.b64encode(data).decode()
|
34 |
href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">{file_label}</a>'
|
35 |
return href
|
36 |
|
37 |
-
st.markdown(
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
def open_data(self):
|
40 |
with open(self.path_data) as json_file:
|
41 |
data = json.load(json_file)
|
@@ -43,13 +57,17 @@ class Visualization:
|
|
43 |
self.num_docs = min(self.num_docs, len(data))
|
44 |
self.num_docs_for_words = min(self.num_docs_for_words, len(data))
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
49 |
|
50 |
docs = data[: self.num_docs]
|
51 |
for doc in docs:
|
52 |
-
|
|
|
53 |
if len(doc["text"]) > self.max_len_text_display:
|
54 |
doc["text"] = (
|
55 |
doc["text"][: self.max_len_text_display]
|
@@ -179,82 +197,103 @@ class Visualization:
|
|
179 |
"Click on a column to sort by it, place the cursor on the text to display it."
|
180 |
)
|
181 |
st.dataframe(displayed_docs)
|
182 |
-
|
183 |
display_dataset(np.invert(all_conds), "Discarded documents")
|
184 |
|
185 |
-
#st.subheader("Display discarded documents by filter")
|
186 |
-
display_discarded_documents_by_filter = st.checkbox(
|
|
|
|
|
187 |
|
188 |
if display_discarded_documents_by_filter:
|
189 |
columns = list(self.docs)
|
190 |
|
191 |
if "number_words" in columns:
|
192 |
cond_filter = np.invert(np.all(conds["number_words"], axis=0))
|
193 |
-
display_dataset(
|
|
|
|
|
|
|
194 |
|
195 |
if "special_characters_ratio" in columns:
|
196 |
-
cond_filter = np.invert(
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
if "stopwords_ratio" in columns:
|
200 |
cond_filter = np.invert(np.all(conds["stopwords_ratio"], axis=0))
|
201 |
-
display_dataset(
|
|
|
|
|
|
|
202 |
|
203 |
if "badwords_ratio" in columns:
|
204 |
cond_filter = np.invert(np.all(conds["badwords_ratio"], axis=0))
|
205 |
-
display_dataset(
|
|
|
|
|
|
|
206 |
|
207 |
if "lang_id_score" in columns:
|
208 |
cond_filter = np.invert(np.all(conds["lang_id_score"], axis=0))
|
209 |
-
display_dataset(
|
|
|
|
|
|
|
210 |
|
211 |
if "perplexity_score" in columns:
|
212 |
cond_filter = np.invert(np.all(conds["perplexity_score"], axis=0))
|
213 |
-
display_dataset(
|
|
|
|
|
|
|
214 |
|
215 |
display_dataset(all_conds, "Retained documents")
|
216 |
|
217 |
def filtering_of_words(self):
|
218 |
-
|
|
|
219 |
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
max_len_word = min(int(np.max(self.words["len_word"])) + 1, 200)
|
224 |
-
cutoff_word = st.sidebar.slider(cutoff_def, 0, max_len_word, max_len_word)
|
225 |
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
|
234 |
-
|
235 |
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
|
259 |
def plot_distributions_filtering_parameters(self):
|
260 |
st.header("Distributions of the filtering parameters")
|
@@ -276,27 +315,29 @@ class Visualization:
|
|
276 |
for key in list({el[0]: None for el in self.keys}):
|
277 |
plot_hist(self.docs, key)
|
278 |
|
279 |
-
|
|
|
280 |
|
281 |
def plot_zipf_law(self):
|
282 |
-
|
|
|
283 |
|
284 |
-
|
285 |
|
286 |
-
|
287 |
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
|
301 |
def download_data(self):
|
302 |
st.header("Download data")
|
@@ -320,13 +361,18 @@ class Visualization:
|
|
320 |
|
321 |
|
322 |
path_instructions = "./filtering_pipeline_oscar.pdf"
|
323 |
-
path_data = "./
|
324 |
-
lang = "
|
325 |
num_docs = 5000
|
326 |
num_docs_for_words = 500
|
327 |
max_len_text_display = 10000
|
328 |
|
329 |
visualization = Visualization(
|
330 |
-
path_instructions,
|
|
|
|
|
|
|
|
|
|
|
331 |
)
|
332 |
visualization.visualization()
|
|
|
15 |
|
16 |
class Visualization:
|
17 |
def __init__(
|
18 |
+
self,
|
19 |
+
path_instructions,
|
20 |
+
path_data,
|
21 |
+
lang,
|
22 |
+
num_docs,
|
23 |
+
num_docs_for_words,
|
24 |
+
max_len_text_display,
|
25 |
):
|
26 |
self.path_instructions = path_instructions
|
27 |
self.path_data = path_data
|
|
|
31 |
self.max_len_text_display = max_len_text_display
|
32 |
|
33 |
def preamble(self):
|
34 |
+
st.markdown(
|
35 |
+
"Before diving into this demo, you might want to take a look at how the filtering pipeline of OSCAR looks like in more detail."
|
36 |
+
)
|
37 |
|
38 |
+
def get_binary_file_downloader_html(bin_file, file_label="File"):
|
39 |
+
with open(bin_file, "rb") as f:
|
40 |
data = f.read()
|
41 |
bin_str = base64.b64encode(data).decode()
|
42 |
href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">{file_label}</a>'
|
43 |
return href
|
44 |
|
45 |
+
st.markdown(
|
46 |
+
get_binary_file_downloader_html(
|
47 |
+
self.path_instructions,
|
48 |
+
"Download the filtering pipeline of OSCAR as pdf",
|
49 |
+
),
|
50 |
+
unsafe_allow_html=True,
|
51 |
+
)
|
52 |
+
|
53 |
def open_data(self):
|
54 |
with open(self.path_data) as json_file:
|
55 |
data = json.load(json_file)
|
|
|
57 |
self.num_docs = min(self.num_docs, len(data))
|
58 |
self.num_docs_for_words = min(self.num_docs_for_words, len(data))
|
59 |
|
60 |
+
if "words" in data[0]:
|
61 |
+
words = [doc["words"] for doc in data[: self.num_docs_for_words]]
|
62 |
+
words = [word for doc in words for word in doc]
|
63 |
+
self.words = pd.DataFrame(words)
|
64 |
+
else:
|
65 |
+
self.words = None
|
66 |
|
67 |
docs = data[: self.num_docs]
|
68 |
for doc in docs:
|
69 |
+
if not (self.words is None):
|
70 |
+
del doc["words"]
|
71 |
if len(doc["text"]) > self.max_len_text_display:
|
72 |
doc["text"] = (
|
73 |
doc["text"][: self.max_len_text_display]
|
|
|
197 |
"Click on a column to sort by it, place the cursor on the text to display it."
|
198 |
)
|
199 |
st.dataframe(displayed_docs)
|
200 |
+
|
201 |
display_dataset(np.invert(all_conds), "Discarded documents")
|
202 |
|
203 |
+
# st.subheader("Display discarded documents by filter")
|
204 |
+
display_discarded_documents_by_filter = st.checkbox(
|
205 |
+
"Display discarded documents by filter"
|
206 |
+
)
|
207 |
|
208 |
if display_discarded_documents_by_filter:
|
209 |
columns = list(self.docs)
|
210 |
|
211 |
if "number_words" in columns:
|
212 |
cond_filter = np.invert(np.all(conds["number_words"], axis=0))
|
213 |
+
display_dataset(
|
214 |
+
cond_filter,
|
215 |
+
"Discarded documents for the filter on the number of words",
|
216 |
+
)
|
217 |
|
218 |
if "special_characters_ratio" in columns:
|
219 |
+
cond_filter = np.invert(
|
220 |
+
np.all(conds["special_characters_ratio"], axis=0)
|
221 |
+
)
|
222 |
+
display_dataset(
|
223 |
+
cond_filter,
|
224 |
+
"Discarded documents for the filter on the special characters ratio",
|
225 |
+
)
|
226 |
|
227 |
if "stopwords_ratio" in columns:
|
228 |
cond_filter = np.invert(np.all(conds["stopwords_ratio"], axis=0))
|
229 |
+
display_dataset(
|
230 |
+
cond_filter,
|
231 |
+
"Discarded documents for the filter on the stop words ratio",
|
232 |
+
)
|
233 |
|
234 |
if "badwords_ratio" in columns:
|
235 |
cond_filter = np.invert(np.all(conds["badwords_ratio"], axis=0))
|
236 |
+
display_dataset(
|
237 |
+
cond_filter,
|
238 |
+
"Discarded documents for the filter on the bad words ratio",
|
239 |
+
)
|
240 |
|
241 |
if "lang_id_score" in columns:
|
242 |
cond_filter = np.invert(np.all(conds["lang_id_score"], axis=0))
|
243 |
+
display_dataset(
|
244 |
+
cond_filter,
|
245 |
+
"Discarded documents for the filter on the language identification confidence score",
|
246 |
+
)
|
247 |
|
248 |
if "perplexity_score" in columns:
|
249 |
cond_filter = np.invert(np.all(conds["perplexity_score"], axis=0))
|
250 |
+
display_dataset(
|
251 |
+
cond_filter,
|
252 |
+
"Discarded documents for the filter on the perplexity score",
|
253 |
+
)
|
254 |
|
255 |
display_dataset(all_conds, "Retained documents")
|
256 |
|
257 |
def filtering_of_words(self):
|
258 |
+
if not (self.words is None):
|
259 |
+
st.sidebar.subheader("Parameter of the filtering on words")
|
260 |
|
261 |
+
cutoff_def = "If the length of a word is higher than this number, the word is removed."
|
262 |
+
max_len_word = min(int(np.max(self.words["len_word"])) + 1, 200)
|
263 |
+
cutoff_word = st.sidebar.slider(cutoff_def, 0, max_len_word, max_len_word)
|
|
|
|
|
264 |
|
265 |
+
incorrect_substrings = st.sidebar.checkbox(
|
266 |
+
"Remove words with incorrect substrings."
|
267 |
+
)
|
268 |
|
269 |
+
cond_words = self.words["len_word"] <= cutoff_word
|
270 |
+
if incorrect_substrings:
|
271 |
+
cond_words = cond_words & np.invert(self.words["incorrect_substring"])
|
272 |
|
273 |
+
st.header("Filtering on words")
|
274 |
|
275 |
+
st.markdown(
|
276 |
+
f"Since the number of words is way larger than the number of documents, "
|
277 |
+
f"we consider in this section words for the first {self.num_docs_for_words} documents only."
|
278 |
+
)
|
279 |
|
280 |
+
discarded_words = self.words.loc[np.invert(cond_words)]
|
281 |
+
st.subheader(
|
282 |
+
f"Discarded words: {len(discarded_words)} words ({len(discarded_words) / len(self.words) * 100:.2f}%)"
|
283 |
+
)
|
284 |
+
st.markdown(
|
285 |
+
"Click on a column to sort by it, place the cursor on the text to display it."
|
286 |
+
)
|
287 |
+
st.dataframe(discarded_words)
|
288 |
|
289 |
+
retained_words = self.words.loc[cond_words]
|
290 |
+
st.subheader(
|
291 |
+
f"Retained words: {len(retained_words)} words ({len(retained_words) / len(self.words) * 100:.2f}%)"
|
292 |
+
)
|
293 |
+
st.markdown(
|
294 |
+
"Click on a column to sort by it, place the cursor on the text to display it."
|
295 |
+
)
|
296 |
+
st.dataframe(retained_words)
|
297 |
|
298 |
def plot_distributions_filtering_parameters(self):
|
299 |
st.header("Distributions of the filtering parameters")
|
|
|
315 |
for key in list({el[0]: None for el in self.keys}):
|
316 |
plot_hist(self.docs, key)
|
317 |
|
318 |
+
if not (self.words is None):
|
319 |
+
plot_hist(self.words, "len_word")
|
320 |
|
321 |
def plot_zipf_law(self):
|
322 |
+
if not (self.words is None):
|
323 |
+
st.header("Zipf's Law")
|
324 |
|
325 |
+
display_zipf_law = st.checkbox("Display Zipf's Law")
|
326 |
|
327 |
+
if display_zipf_law:
|
328 |
|
329 |
+
freq_words = {}
|
330 |
+
for _, row in self.words.iterrows():
|
331 |
+
freq_words[row["word"]] = freq_words.get(row["word"], 0) + 1
|
332 |
+
freq_words = np.array(list(freq_words.values()))
|
333 |
+
freq_words = -np.sort(-freq_words)
|
334 |
|
335 |
+
fig, ax = plt.subplots()
|
336 |
+
ax.loglog(freq_words)
|
337 |
+
ax.set_title("Zipf's Law")
|
338 |
+
ax.set_xlabel("$i$-th most frequent word")
|
339 |
+
ax.set_ylabel("frequency in the documents")
|
340 |
+
st.pyplot(fig)
|
341 |
|
342 |
def download_data(self):
|
343 |
st.header("Download data")
|
|
|
361 |
|
362 |
|
363 |
path_instructions = "./filtering_pipeline_oscar.pdf"
|
364 |
+
path_data = "./zh_examples_with_stats.json"
|
365 |
+
lang = "Chinese"
|
366 |
num_docs = 5000
|
367 |
num_docs_for_words = 500
|
368 |
max_len_text_display = 10000
|
369 |
|
370 |
visualization = Visualization(
|
371 |
+
path_instructions,
|
372 |
+
path_data,
|
373 |
+
lang,
|
374 |
+
num_docs,
|
375 |
+
num_docs_for_words,
|
376 |
+
max_len_text_display,
|
377 |
)
|
378 |
visualization.visualization()
|
en_examples_with_stats.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2325873414309a7ea67d2753202207a2773319dc40f338c0a0fc7bb703463a6
|
3 |
+
size 713107133
|
zh_examples_with_stats.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:438a5bb757c23581784946f345a99ab11b77c43f57a3cbf18148c197ec4ef741
|
3 |
+
size 193517532
|