HugoLaurencon commited on
Commit
c340078
1 Parent(s): 6ddbf7d

delete app_2

Browse files
Files changed (1) hide show
  1. app_2.py +0 -378
app_2.py DELETED
@@ -1,378 +0,0 @@
1
- # Run with: streamlit run visualization.py
2
-
3
- import streamlit as st
4
-
5
- import os
6
-
7
- import base64
8
- import json
9
- import pandas as pd
10
-
11
- import numpy as np
12
-
13
- import matplotlib.pyplot as plt
14
-
15
-
16
- class Visualization:
17
- def __init__(
18
- self,
19
- path_instructions,
20
- path_data,
21
- lang,
22
- num_docs,
23
- num_docs_for_words,
24
- max_len_text_display,
25
- ):
26
- self.path_instructions = path_instructions
27
- self.path_data = path_data
28
- self.lang = lang
29
- self.num_docs = num_docs
30
- self.num_docs_for_words = num_docs_for_words
31
- self.max_len_text_display = max_len_text_display
32
-
33
- def preamble(self):
34
- st.markdown(
35
- "Before diving into this demo, you might want to take a look at how the filtering pipeline of OSCAR looks like in more detail."
36
- )
37
-
38
- def get_binary_file_downloader_html(bin_file, file_label="File"):
39
- with open(bin_file, "rb") as f:
40
- data = f.read()
41
- bin_str = base64.b64encode(data).decode()
42
- href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">{file_label}</a>'
43
- return href
44
-
45
- st.markdown(
46
- get_binary_file_downloader_html(
47
- self.path_instructions,
48
- "Download the filtering pipeline of OSCAR as pdf",
49
- ),
50
- unsafe_allow_html=True,
51
- )
52
-
53
- def open_data(self):
54
- with open(self.path_data) as json_file:
55
- data = json.load(json_file)
56
-
57
- self.num_docs = min(self.num_docs, len(data))
58
- self.num_docs_for_words = min(self.num_docs_for_words, len(data))
59
-
60
- if "words" in data[0]:
61
- words = [doc["words"] for doc in data[: self.num_docs_for_words]]
62
- words = [word for doc in words for word in doc]
63
- self.words = pd.DataFrame(words)
64
- else:
65
- self.words = None
66
-
67
- docs = data[: self.num_docs]
68
- for doc in docs:
69
- if not (self.words is None):
70
- del doc["words"]
71
- if len(doc["text"]) > self.max_len_text_display:
72
- doc["text"] = (
73
- doc["text"][: self.max_len_text_display]
74
- + " [...] [THIS LONG TEXT HAS BEEN TRUNCATED FOR DISPLAY REASONS]"
75
- )
76
- self.docs = pd.DataFrame(docs)
77
-
78
- def set_title(self):
79
- st.title(f"{self.num_docs} {self.lang} documents from OSCAR with their stats.")
80
-
81
- def filtering_of_docs(self):
82
- st.sidebar.subheader("Parameters of the filtering on documents")
83
-
84
- def set_sliders(docs):
85
- columns = list(docs)
86
- keys = []
87
- conds = {}
88
-
89
- def get_cond(key, cutoff, max_cutoff):
90
- if max_cutoff:
91
- return self.docs[key] <= cutoff
92
- return self.docs[key] >= cutoff
93
-
94
- def print_discared_by_cond(cond):
95
- st.sidebar.caption(
96
- f"{(len(cond) - np.sum(1*cond)) / len(cond) * 100:.2f}% of the total is discarded with this filter."
97
- )
98
- st.sidebar.caption("---------")
99
-
100
- if "number_words" in columns:
101
- cutoff_def = "If the number of words of a document is lower than this number, the document is removed."
102
- max_nb_words = int(np.max(docs["number_words"])) + 1
103
- cutoff_min_number_words = st.sidebar.slider(
104
- cutoff_def, 0, min(max_nb_words, 500), 0
105
- )
106
- new_key = ("number_words", cutoff_min_number_words, False)
107
- keys.append(new_key)
108
- cond_1 = get_cond(new_key[0], new_key[1], new_key[2])
109
- print_discared_by_cond(cond_1)
110
-
111
- cutoff_def = "If the number of words of a document is higher than this number, the document is removed."
112
- cutoff_max_number_words = st.sidebar.slider(
113
- cutoff_def, 0, max_nb_words, max_nb_words
114
- )
115
- new_key = ("number_words", cutoff_max_number_words, True)
116
- keys.append(new_key)
117
- cond_2 = get_cond(new_key[0], new_key[1], new_key[2])
118
- print_discared_by_cond(cond_2)
119
-
120
- conds["number_words"] = [cond_1, cond_2]
121
-
122
- if "special_characters_ratio" in columns:
123
- cutoff_def = "If the special characters ratio of a document is higher than this number, the document is removed."
124
- cutoff_special_characters_ratio = st.sidebar.slider(
125
- cutoff_def, 0.0, 1.0, 1.0, step=0.01
126
- )
127
- new_key = (
128
- "special_characters_ratio",
129
- cutoff_special_characters_ratio,
130
- True,
131
- )
132
- keys.append(new_key)
133
- cond = get_cond(new_key[0], new_key[1], new_key[2])
134
- print_discared_by_cond(cond)
135
- conds["special_characters_ratio"] = [cond]
136
-
137
- if "stopwords_ratio" in columns:
138
- cutoff_def = "If the stop words ratio of a document is lower than this number, the document is removed."
139
- cutoff_stopwords_ratio = st.sidebar.slider(
140
- cutoff_def, 0.0, 1.0, 0.0, step=0.01
141
- )
142
- new_key = ("stopwords_ratio", cutoff_stopwords_ratio, False)
143
- keys.append(new_key)
144
- cond = get_cond(new_key[0], new_key[1], new_key[2])
145
- print_discared_by_cond(cond)
146
- conds["stopwords_ratio"] = [cond]
147
-
148
- if "badwords_ratio" in columns:
149
- cutoff_def = "If the bad words ratio of a document is higher than this number, the document is removed."
150
- cutoff_badwords_ratio = st.sidebar.slider(
151
- cutoff_def, 0.0, 1.0, 1.0, step=0.01
152
- )
153
- new_key = ("badwords_ratio", cutoff_badwords_ratio, True)
154
- keys.append(new_key)
155
- cond = get_cond(new_key[0], new_key[1], new_key[2])
156
- print_discared_by_cond(cond)
157
- conds["badwords_ratio"] = [cond]
158
-
159
- if "lang_id_score" in columns:
160
- cutoff_def = "If the confidence score for the language identification prediction of a document is lower than this number, the document is removed."
161
- cutoff_lang_id_score = st.sidebar.slider(
162
- cutoff_def, 0.0, 1.0, 0.0, step=0.01
163
- )
164
- new_key = ("lang_id_score", cutoff_lang_id_score, False)
165
- keys.append(new_key)
166
- cond = get_cond(new_key[0], new_key[1], new_key[2])
167
- print_discared_by_cond(cond)
168
- conds["lang_id_score"] = [cond]
169
-
170
- if "perplexity_score" in columns:
171
- cutoff_def = "If the perplexity score of a document is higher than this number, the document is removed."
172
- max_pp = int(np.max(docs["perplexity_score"])) + 1
173
- cutoff_perplexity_score = st.sidebar.slider(
174
- cutoff_def, 0, max_pp, max_pp
175
- )
176
- new_key = ("perplexity_score", cutoff_perplexity_score, True)
177
- keys.append(new_key)
178
- cond = get_cond(new_key[0], new_key[1], new_key[2])
179
- print_discared_by_cond(cond)
180
- conds["perplexity_score"] = [cond]
181
-
182
- return keys, conds
183
-
184
- self.keys, conds = set_sliders(self.docs)
185
-
186
- all_conds = [subcond for cond in list(conds.values()) for subcond in cond]
187
- all_conds = np.all(all_conds, axis=0)
188
-
189
- st.header("Filtering on documents")
190
-
191
- def display_dataset(cond, description):
192
- displayed_docs = self.docs.loc[cond]
193
- st.subheader(
194
- f"{description}: {len(displayed_docs)} docs ({len(displayed_docs) / self.num_docs * 100:.2f}%)"
195
- )
196
- st.markdown(
197
- "Click on a column to sort by it, place the cursor on the text to display it."
198
- )
199
- st.dataframe(displayed_docs)
200
-
201
- display_dataset(np.invert(all_conds), "Discarded documents")
202
-
203
- # st.subheader("Display discarded documents by filter")
204
- display_discarded_documents_by_filter = st.checkbox(
205
- "Display discarded documents by filter"
206
- )
207
-
208
- if display_discarded_documents_by_filter:
209
- columns = list(self.docs)
210
-
211
- if "number_words" in columns:
212
- cond_filter = np.invert(np.all(conds["number_words"], axis=0))
213
- display_dataset(
214
- cond_filter,
215
- "Discarded documents for the filter on the number of words",
216
- )
217
-
218
- if "special_characters_ratio" in columns:
219
- cond_filter = np.invert(
220
- np.all(conds["special_characters_ratio"], axis=0)
221
- )
222
- display_dataset(
223
- cond_filter,
224
- "Discarded documents for the filter on the special characters ratio",
225
- )
226
-
227
- if "stopwords_ratio" in columns:
228
- cond_filter = np.invert(np.all(conds["stopwords_ratio"], axis=0))
229
- display_dataset(
230
- cond_filter,
231
- "Discarded documents for the filter on the stop words ratio",
232
- )
233
-
234
- if "badwords_ratio" in columns:
235
- cond_filter = np.invert(np.all(conds["badwords_ratio"], axis=0))
236
- display_dataset(
237
- cond_filter,
238
- "Discarded documents for the filter on the bad words ratio",
239
- )
240
-
241
- if "lang_id_score" in columns:
242
- cond_filter = np.invert(np.all(conds["lang_id_score"], axis=0))
243
- display_dataset(
244
- cond_filter,
245
- "Discarded documents for the filter on the language identification confidence score",
246
- )
247
-
248
- if "perplexity_score" in columns:
249
- cond_filter = np.invert(np.all(conds["perplexity_score"], axis=0))
250
- display_dataset(
251
- cond_filter,
252
- "Discarded documents for the filter on the perplexity score",
253
- )
254
-
255
- display_dataset(all_conds, "Retained documents")
256
-
257
- def filtering_of_words(self):
258
- if not (self.words is None):
259
- st.sidebar.subheader("Parameter of the filtering on words")
260
-
261
- cutoff_def = "If the length of a word is higher than this number, the word is removed."
262
- max_len_word = min(int(np.max(self.words["len_word"])) + 1, 200)
263
- cutoff_word = st.sidebar.slider(cutoff_def, 0, max_len_word, max_len_word)
264
-
265
- incorrect_substrings = st.sidebar.checkbox(
266
- "Remove words with incorrect substrings."
267
- )
268
-
269
- cond_words = self.words["len_word"] <= cutoff_word
270
- if incorrect_substrings:
271
- cond_words = cond_words & np.invert(self.words["incorrect_substring"])
272
-
273
- st.header("Filtering on words")
274
-
275
- st.markdown(
276
- f"Since the number of words is way larger than the number of documents, "
277
- f"we consider in this section words for the first {self.num_docs_for_words} documents only."
278
- )
279
-
280
- discarded_words = self.words.loc[np.invert(cond_words)]
281
- st.subheader(
282
- f"Discarded words: {len(discarded_words)} words ({len(discarded_words) / len(self.words) * 100:.2f}%)"
283
- )
284
- st.markdown(
285
- "Click on a column to sort by it, place the cursor on the text to display it."
286
- )
287
- st.dataframe(discarded_words)
288
-
289
- retained_words = self.words.loc[cond_words]
290
- st.subheader(
291
- f"Retained words: {len(retained_words)} words ({len(retained_words) / len(self.words) * 100:.2f}%)"
292
- )
293
- st.markdown(
294
- "Click on a column to sort by it, place the cursor on the text to display it."
295
- )
296
- st.dataframe(retained_words)
297
-
298
- def plot_distributions_filtering_parameters(self):
299
- st.header("Distributions of the filtering parameters")
300
-
301
- display_distributions = st.checkbox("Display distributions")
302
-
303
- if display_distributions:
304
-
305
- def plot_hist(dataframe, key, num_bins=50):
306
- st.subheader(" ".join(key.split("_")))
307
- hist_values = dataframe[key].values
308
- max_range = np.max(hist_values)
309
- hist_values = np.histogram(
310
- hist_values, bins=num_bins, range=(0, max_range)
311
- )[0]
312
- st.bar_chart(hist_values)
313
- st.markdown(f"Each bin is of size: {max_range/num_bins}.")
314
-
315
- for key in list({el[0]: None for el in self.keys}):
316
- plot_hist(self.docs, key)
317
-
318
- if not (self.words is None):
319
- plot_hist(self.words, "len_word")
320
-
321
- def plot_zipf_law(self):
322
- if not (self.words is None):
323
- st.header("Zipf's Law")
324
-
325
- display_zipf_law = st.checkbox("Display Zipf's Law")
326
-
327
- if display_zipf_law:
328
-
329
- freq_words = {}
330
- for _, row in self.words.iterrows():
331
- freq_words[row["word"]] = freq_words.get(row["word"], 0) + 1
332
- freq_words = np.array(list(freq_words.values()))
333
- freq_words = -np.sort(-freq_words)
334
-
335
- fig, ax = plt.subplots()
336
- ax.loglog(freq_words)
337
- ax.set_title("Zipf's Law")
338
- ax.set_xlabel("$i$-th most frequent word")
339
- ax.set_ylabel("frequency in the documents")
340
- st.pyplot(fig)
341
-
342
- def download_data(self):
343
- st.header("Download data")
344
-
345
- with open(self.path_data) as json_file:
346
- btn = st.download_button(
347
- label="Download data as json",
348
- data=json_file,
349
- file_name="data.json",
350
- )
351
-
352
- def visualization(self):
353
- self.preamble()
354
- self.open_data()
355
- self.set_title()
356
- self.filtering_of_docs()
357
- self.filtering_of_words()
358
- self.plot_distributions_filtering_parameters()
359
- #self.plot_zipf_law()
360
- self.download_data()
361
-
362
-
363
- path_instructions = "./filtering_pipeline_oscar.pdf"
364
- path_data = "./zh_examples_with_stats.json"
365
- lang = "Chinese"
366
- num_docs = 5000
367
- num_docs_for_words = 500
368
- max_len_text_display = 10000
369
-
370
- visualization = Visualization(
371
- path_instructions,
372
- path_data,
373
- lang,
374
- num_docs,
375
- num_docs_for_words,
376
- max_len_text_display,
377
- )
378
- visualization.visualization()