TVN update
Browse files- app.py +53 -81
- en_examples_with_stats_no_small_docs.json +3 -0
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import streamlit as st
|
2 |
import json
|
3 |
import pandas as pd
|
|
|
4 |
import numpy as np
|
5 |
import matplotlib.pyplot as plt
|
6 |
|
@@ -15,7 +16,7 @@ def visualization(path_data, lang, num_docs, num_docs_for_words):
|
|
15 |
st.title(f"{num_docs} {lang} documents from Oscar with their stats.")
|
16 |
|
17 |
sentences = [doc["text"].split(" ") for doc in data[:num_docs_for_words]]
|
18 |
-
words = [word for sentence in sentences for word in sentence]
|
19 |
words_data = [{"len_word": len(word), "word": word} for word in words]
|
20 |
words_data = pd.DataFrame(words_data)
|
21 |
|
@@ -24,39 +25,46 @@ def visualization(path_data, lang, num_docs, num_docs_for_words):
|
|
24 |
|
25 |
columns = list(data)
|
26 |
keys = []
|
|
|
27 |
|
28 |
-
st.header("
|
29 |
|
30 |
-
if "special_characters_ratio" in columns:
|
31 |
-
cutoff_special_characters_ratio = st.slider(
|
32 |
-
"Max cutoff special characters ratio", 0.0, 1.0, 1.0, step=0.01
|
33 |
-
)
|
34 |
-
keys.append(("special_characters_ratio", cutoff_special_characters_ratio, True))
|
35 |
|
36 |
-
if "
|
37 |
-
|
38 |
-
"
|
39 |
)
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
45 |
)
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
51 |
)
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
58 |
)
|
59 |
-
|
|
|
|
|
|
|
60 |
|
61 |
cond = [
|
62 |
(data[key] <= cutoff) if max_cutoff else (data[key] >= cutoff)
|
@@ -64,78 +72,42 @@ def visualization(path_data, lang, num_docs, num_docs_for_words):
|
|
64 |
]
|
65 |
cond = np.all(cond, axis=0)
|
66 |
|
67 |
-
data_keep = data.loc[cond]
|
68 |
-
st.header("Data that we keep")
|
69 |
-
st.markdown("Click on a column to sort by it.")
|
70 |
-
st.markdown("Place the cursor on the text to display it.")
|
71 |
-
st.dataframe(data_keep)
|
72 |
-
|
73 |
data_not_keep = data.loc[np.invert(cond)]
|
74 |
-
st.
|
75 |
-
st.markdown("Click on a column to sort by it.")
|
76 |
-
st.markdown("Place the cursor on the text to display it.")
|
77 |
st.dataframe(data_not_keep)
|
78 |
|
|
|
|
|
|
|
|
|
|
|
79 |
def plot_hist(dataframe, key, num_bins=50):
|
80 |
-
st.
|
81 |
hist_values = dataframe[key].values
|
82 |
max_range = np.max(hist_values)
|
83 |
hist_values = np.histogram(hist_values, bins=num_bins, range=(0, max_range))[0]
|
84 |
st.bar_chart(hist_values)
|
85 |
st.markdown(f"Each bin is of size: {max_range/num_bins}.")
|
86 |
|
87 |
-
for key, _, _ in keys:
|
88 |
-
|
89 |
-
|
90 |
-
st.header("
|
91 |
-
|
92 |
-
def get_frequency_words(data):
|
93 |
-
freq_words = {}
|
94 |
-
for index, row in data.iterrows():
|
95 |
-
for word in row["text"].split(" "):
|
96 |
-
if word in freq_words:
|
97 |
-
freq_words[word] += 1
|
98 |
-
else:
|
99 |
-
freq_words[word] = 1
|
100 |
-
freq_words = np.array(list(freq_words.values()))
|
101 |
-
freq_words = -np.sort(-freq_words)
|
102 |
-
return freq_words
|
103 |
-
|
104 |
-
freq_words_data = get_frequency_words(data)
|
105 |
-
freq_words_data_keep = get_frequency_words(data_keep)
|
106 |
-
freq_words_data_not_keep = get_frequency_words(data_not_keep)
|
107 |
-
|
108 |
-
fig, ax = plt.subplots()
|
109 |
-
ax.loglog(freq_words_data)
|
110 |
-
ax.loglog(freq_words_data_keep)
|
111 |
-
ax.loglog(freq_words_data_not_keep)
|
112 |
-
ax.set_title("Zipf's Law")
|
113 |
-
ax.set_xlabel("$i$-th most frequent word")
|
114 |
-
ax.set_ylabel("frequency in the documents")
|
115 |
-
ax.legend(["All data", "Data that we keep", "Data that is thrown away"])
|
116 |
-
st.pyplot(fig)
|
117 |
-
|
118 |
-
st.markdown("If less than three curves are displayed, it means that there are overlaps.")
|
119 |
-
|
120 |
-
st.header("Parameter of the filtering for words")
|
121 |
max_len_word = int(np.max(words_data["len_word"])) + 1
|
122 |
-
cutoff_word = st.slider("
|
123 |
cond_words = words_data["len_word"] <= cutoff_word
|
124 |
|
125 |
words_keep = words_data.loc[cond_words]
|
126 |
-
st.
|
127 |
-
st.markdown("Click on a column to sort by it.")
|
128 |
-
st.markdown("Place the cursor on the text to display it.")
|
129 |
st.dataframe(words_keep)
|
130 |
|
131 |
words_not_keep = words_data.loc[np.invert(cond_words)]
|
132 |
-
st.
|
133 |
-
st.markdown("Click on a column to sort by it.")
|
134 |
-
st.markdown("Place the cursor on the text to display it.")
|
135 |
st.dataframe(words_not_keep)
|
136 |
|
137 |
-
plot_hist(words_data, "len_word")
|
138 |
-
|
139 |
st.header("Download data")
|
140 |
|
141 |
with open(path_data) as json_file:
|
@@ -146,7 +118,7 @@ def visualization(path_data, lang, num_docs, num_docs_for_words):
|
|
146 |
)
|
147 |
|
148 |
|
149 |
-
path_data = "./
|
150 |
lang = "English"
|
151 |
num_docs = 5000
|
152 |
num_docs_for_words = 500
|
|
|
1 |
import streamlit as st
|
2 |
import json
|
3 |
import pandas as pd
|
4 |
+
import math
|
5 |
import numpy as np
|
6 |
import matplotlib.pyplot as plt
|
7 |
|
|
|
16 |
st.title(f"{num_docs} {lang} documents from Oscar with their stats.")
|
17 |
|
18 |
sentences = [doc["text"].split(" ") for doc in data[:num_docs_for_words]]
|
19 |
+
words = set([word for sentence in sentences for word in sentence])
|
20 |
words_data = [{"len_word": len(word), "word": word} for word in words]
|
21 |
words_data = pd.DataFrame(words_data)
|
22 |
|
|
|
25 |
|
26 |
columns = list(data)
|
27 |
keys = []
|
28 |
+
values = {}
|
29 |
|
30 |
+
st.header("Filtering based on document content")
|
31 |
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
if "special_%" in columns:
|
34 |
+
special_ratio = st.sidebar.slider(
|
35 |
+
"% filtered by special characters ratio", 0.0, 100.0, 0.0, step=1.0
|
36 |
)
|
37 |
+
cutoff_index = max(0, math.floor((100 - special_ratio) * len(data.index) / 100) - 1)
|
38 |
+
special_cutoff = np.partition(data["special_%"], cutoff_index)[cutoff_index]
|
39 |
+
st.sidebar.text(f"Kept text with <{special_cutoff:.1f}% special chars")
|
40 |
+
keys.append(("special_%", special_cutoff, True))
|
41 |
+
|
42 |
+
if "stop_%" in columns:
|
43 |
+
stop_ratio = st.sidebar.slider(
|
44 |
+
"% filtered by stop word ratio", 0.0, 100.0, 0.0, step=1.0
|
45 |
)
|
46 |
+
cutoff_index = max(0, math.floor(stop_ratio * len(data.index) / 100) - 1)
|
47 |
+
stop_cutoff = np.partition(data["stop_%"], cutoff_index)[cutoff_index]
|
48 |
+
st.sidebar.text(f"Kept text with >{stop_cutoff:.1f}% stop words")
|
49 |
+
keys.append(("stop_%", stop_cutoff, False))
|
50 |
+
|
51 |
+
if "bad_%" in columns:
|
52 |
+
bad_ratio = st.sidebar.slider(
|
53 |
+
"% filtered by badwords ratio", 0.0, 100.0, 0.0, step=1.0
|
54 |
)
|
55 |
+
bad_index = max(0, math.floor((100 - bad_ratio) * len(data.index) / 100) - 1)
|
56 |
+
bad_cutoff = np.partition(data["bad_%"], bad_index)[bad_index]
|
57 |
+
st.sidebar.text(f"Kept text with <{bad_cutoff:.1f}% bad words")
|
58 |
+
keys.append(("bad_%", bad_cutoff, True))
|
59 |
+
|
60 |
+
if "perplexity" in columns:
|
61 |
+
ppl_ratio = st.sidebar.slider(
|
62 |
+
"% filtered by perplexity", 0.0, 100.0, 0.0, step=1.0
|
63 |
)
|
64 |
+
ppl_index = max(0, math.floor((100 - ppl_ratio) * len(data.index) / 100) - 1)
|
65 |
+
ppl_cutoff = np.partition(data["perplexity"], ppl_index)[ppl_index]
|
66 |
+
st.sidebar.text(f"Kept text with <{ppl_cutoff:.0f} perplexity")
|
67 |
+
keys.append(("perplexity", ppl_cutoff, True))
|
68 |
|
69 |
cond = [
|
70 |
(data[key] <= cutoff) if max_cutoff else (data[key] >= cutoff)
|
|
|
72 |
]
|
73 |
cond = np.all(cond, axis=0)
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
data_not_keep = data.loc[np.invert(cond)]
|
76 |
+
st.subheader("Filtered data")
|
77 |
+
st.markdown("Click on a column to sort by it, place the cursor on the text to display it.")
|
|
|
78 |
st.dataframe(data_not_keep)
|
79 |
|
80 |
+
data_keep = data.loc[cond]
|
81 |
+
st.subheader("Kept data")
|
82 |
+
st.markdown("Click on a column to sort by it, place the cursor on the text to display it.")
|
83 |
+
st.dataframe(data_keep)
|
84 |
+
|
85 |
def plot_hist(dataframe, key, num_bins=50):
|
86 |
+
st.subheader(" ".join(key.split("_")))
|
87 |
hist_values = dataframe[key].values
|
88 |
max_range = np.max(hist_values)
|
89 |
hist_values = np.histogram(hist_values, bins=num_bins, range=(0, max_range))[0]
|
90 |
st.bar_chart(hist_values)
|
91 |
st.markdown(f"Each bin is of size: {max_range/num_bins}.")
|
92 |
|
93 |
+
# for key, _, _ in keys:
|
94 |
+
# plot_hist(data, key)
|
95 |
+
|
96 |
+
st.header("Filtering links and concatenated words")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
max_len_word = int(np.max(words_data["len_word"])) + 1
|
98 |
+
cutoff_word = st.sidebar.slider("Word length cutoff", 0, max_len_word, max_len_word)
|
99 |
cond_words = words_data["len_word"] <= cutoff_word
|
100 |
|
101 |
words_keep = words_data.loc[cond_words]
|
102 |
+
st.subheader(f"Words that we keep (for {num_docs_for_words} documents)")
|
103 |
+
st.markdown("Click on a column to sort by it, place the cursor on the text to display it.")
|
|
|
104 |
st.dataframe(words_keep)
|
105 |
|
106 |
words_not_keep = words_data.loc[np.invert(cond_words)]
|
107 |
+
st.subheader(f"Words that are thrown away (for {num_docs_for_words} documents)")
|
108 |
+
st.markdown("Click on a column to sort by it, place the cursor on the text to display it.")
|
|
|
109 |
st.dataframe(words_not_keep)
|
110 |
|
|
|
|
|
111 |
st.header("Download data")
|
112 |
|
113 |
with open(path_data) as json_file:
|
|
|
118 |
)
|
119 |
|
120 |
|
121 |
+
path_data = "./en_examples_with_stats_no_small_docs.json"
|
122 |
lang = "English"
|
123 |
num_docs = 5000
|
124 |
num_docs_for_words = 500
|
en_examples_with_stats_no_small_docs.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42de045d52e16b4c96ec03b332c12f406e52b22b442234eea4845f5b5598784c
|
3 |
+
size 21200705
|