matteopilotto's picture
Add app.py
1d4ad2c
import requests
import gradio as gr
from huggingface_hub import from_pretrained_fastai
import torch
from fastai.text.all import *
from blurr.text.data.all import *
from blurr.text.modeling.all import *
# load model
repo_id = 'matteopilotto/deberta-v3-base-tweet_eval-emotion'
load_learner = from_pretrained_fastai(repo_id)
# define labels
labels_url = 'https://huggingface.co/matteopilotto/deberta-v3-base-tweet_eval-emotion/raw/main/class_names.txt'
labels = requests.get(labels_url).text.splitlines()
# define function to pass to gradio.Interface
def predict(prompt):
out = load_learner.blurr_predict(prompt)[0]
confidences = {label: prob for label, prob in zip(labels, out['probs'])}
return confidences
# define input texbox to pass to gradio.Interface
textbox = gr.Textbox(
label='input',
placeholder=None,
lines=2
)
# define exables to pass to gradio.Interface
examples = ["hey @user #fields in #skibbereen give your online delivery service a horrible name. 1.5 hours late on the 1 hour delivery window.",
"when you only meet each other once at an interview and you recognise each other on the streets πŸ™† i don't even know what's your name πŸ˜‚"]
gr.Interface(
fn=predict,
inputs=textbox,
outputs=gr.Label(),
title='Emotion in tweets',
description="""<center><img src="https://huggingface.co/matteopilotto/deberta-v3-base-tweet_eval-emotion/resolve/main/emoji_image.png" width=600px></center>""",
examples = examples,
live=True
).launch()