Spaces:
Runtime error
Runtime error
import functools | |
import tensorflow as tf | |
from tensorflow.keras import layers | |
from .attentions import RCAB | |
from .misc_gating import CrossGatingBlock, ResidualSplitHeadMultiAxisGmlpLayer | |
Conv1x1 = functools.partial(layers.Conv2D, kernel_size=(1, 1), padding="same") | |
Conv3x3 = functools.partial(layers.Conv2D, kernel_size=(3, 3), padding="same") | |
ConvT_up = functools.partial( | |
layers.Conv2DTranspose, kernel_size=(2, 2), strides=(2, 2), padding="same" | |
) | |
Conv_down = functools.partial( | |
layers.Conv2D, kernel_size=(4, 4), strides=(2, 2), padding="same" | |
) | |
def UNetEncoderBlock( | |
num_channels: int, | |
block_size, | |
grid_size, | |
num_groups: int = 1, | |
lrelu_slope: float = 0.2, | |
block_gmlp_factor: int = 2, | |
grid_gmlp_factor: int = 2, | |
input_proj_factor: int = 2, | |
channels_reduction: int = 4, | |
dropout_rate: float = 0.0, | |
downsample: bool = True, | |
use_global_mlp: bool = True, | |
use_bias: bool = True, | |
use_cross_gating: bool = False, | |
name: str = "unet_encoder", | |
): | |
"""Encoder block in MAXIM.""" | |
def apply(x, skip=None, enc=None, dec=None): | |
if skip is not None: | |
x = tf.concat([x, skip], axis=-1) | |
# convolution-in | |
x = Conv1x1(filters=num_channels, use_bias=use_bias, name=f"{name}_Conv_0")(x) | |
shortcut_long = x | |
for i in range(num_groups): | |
if use_global_mlp: | |
x = ResidualSplitHeadMultiAxisGmlpLayer( | |
grid_size=grid_size, | |
block_size=block_size, | |
grid_gmlp_factor=grid_gmlp_factor, | |
block_gmlp_factor=block_gmlp_factor, | |
input_proj_factor=input_proj_factor, | |
use_bias=use_bias, | |
dropout_rate=dropout_rate, | |
name=f"{name}_SplitHeadMultiAxisGmlpLayer_{i}", | |
)(x) | |
x = RCAB( | |
num_channels=num_channels, | |
reduction=channels_reduction, | |
lrelu_slope=lrelu_slope, | |
use_bias=use_bias, | |
name=f"{name}_channel_attention_block_1{i}", | |
)(x) | |
x = x + shortcut_long | |
if enc is not None and dec is not None: | |
assert use_cross_gating | |
x, _ = CrossGatingBlock( | |
features=num_channels, | |
block_size=block_size, | |
grid_size=grid_size, | |
dropout_rate=dropout_rate, | |
input_proj_factor=input_proj_factor, | |
upsample_y=False, | |
use_bias=use_bias, | |
name=f"{name}_cross_gating_block", | |
)(x, enc + dec) | |
if downsample: | |
x_down = Conv_down( | |
filters=num_channels, use_bias=use_bias, name=f"{name}_Conv_1" | |
)(x) | |
return x_down, x | |
else: | |
return x | |
return apply | |
def UNetDecoderBlock( | |
num_channels: int, | |
block_size, | |
grid_size, | |
num_groups: int = 1, | |
lrelu_slope: float = 0.2, | |
block_gmlp_factor: int = 2, | |
grid_gmlp_factor: int = 2, | |
input_proj_factor: int = 2, | |
channels_reduction: int = 4, | |
dropout_rate: float = 0.0, | |
downsample: bool = True, | |
use_global_mlp: bool = True, | |
use_bias: bool = True, | |
name: str = "unet_decoder", | |
): | |
"""Decoder block in MAXIM.""" | |
def apply(x, bridge=None): | |
x = ConvT_up( | |
filters=num_channels, use_bias=use_bias, name=f"{name}_ConvTranspose_0" | |
)(x) | |
x = UNetEncoderBlock( | |
num_channels=num_channels, | |
num_groups=num_groups, | |
lrelu_slope=lrelu_slope, | |
block_size=block_size, | |
grid_size=grid_size, | |
block_gmlp_factor=block_gmlp_factor, | |
grid_gmlp_factor=grid_gmlp_factor, | |
channels_reduction=channels_reduction, | |
use_global_mlp=use_global_mlp, | |
dropout_rate=dropout_rate, | |
downsample=False, | |
use_bias=use_bias, | |
name=f"{name}_UNetEncoderBlock_0", | |
)(x, skip=bridge) | |
return x | |
return apply | |