Spaces:
Runtime error
Runtime error
File size: 8,106 Bytes
059d8f0 6843958 059d8f0 fb67b80 059d8f0 6843958 e9f37ce 6843958 e9f37ce 6843958 e9f37ce 6843958 e9f37ce 6843958 391b960 059d8f0 ad80e42 6843958 059d8f0 e9f37ce 059d8f0 6843958 e9f37ce 6843958 e9f37ce 059d8f0 e9f37ce f88c021 e9f37ce 059d8f0 31d2bda 7fa09dc 31d2bda 7fa09dc 31d2bda 6867483 e9f37ce 6867483 92334e0 6867483 31d2bda 6867483 31d2bda 7fa09dc 31d2bda 7fa09dc e9f37ce 7fa09dc 31d2bda 059d8f0 92334e0 059d8f0 6867483 059d8f0 31d2bda 6867483 7fa09dc 6867483 31d2bda e838107 059d8f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import requests
import pandas as pd
from tqdm.auto import tqdm
from utils import *
import gradio as gr
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load
class DeepRL_Leaderboard:
def __init__(self) -> None:
self.leaderboard= {}
def add_leaderboad(self,id=None, title=None):
if id is not None and title is not None:
id = id.strip()
title = title.strip()
self.leaderboard.update({id:{'title':title,'data':get_data_per_env(id)}})
def get_data(self):
return self.leaderboard
def get_ids(self):
return list(self.leaderboard.keys())
# CSS file for the
with open('app.css','r') as f:
BLOCK_CSS = f.read()
LOADED_MODEL_IDS = {}
def get_data(rl_env):
global LOADED_MODEL_IDS
data = []
model_ids = get_model_ids(rl_env)
LOADED_MODEL_IDS[rl_env]=model_ids
for model_id in tqdm(model_ids):
meta = get_metadata(model_id)
if meta is None:
continue
user_id = model_id.split('/')[0]
row = {}
row["User"] = user_id
row["Model"] = model_id
accuracy = parse_metrics_accuracy(meta)
mean_reward, std_reward = parse_rewards(accuracy)
row["Results"] = mean_reward - std_reward
row["Mean Reward"] = mean_reward
row["Std Reward"] = std_reward
data.append(row)
return pd.DataFrame.from_records(data)
def get_data_per_env(rl_env):
dataframe = get_data(rl_env)
dataframe = dataframe.fillna("")
if not dataframe.empty:
# turn the model ids into clickable links
dataframe["User"] = dataframe["User"].apply(make_clickable_user)
dataframe["Model"] = dataframe["Model"].apply(make_clickable_model)
dataframe = dataframe.sort_values(by=['Results'], ascending=False)
if not 'Ranking' in dataframe.columns:
dataframe.insert(0, 'Ranking', [i for i in range(1,len(dataframe)+1)])
else:
dataframe['Ranking'] = [i for i in range(1,len(dataframe)+1)]
table_html = dataframe.to_html(escape=False, index=False,justify = 'left')
return table_html,dataframe,dataframe.empty
else:
html = """<div style="color: green">
<p> β Please wait. Results will be out soon... </p>
</div>
"""
return html,dataframe,dataframe.empty
rl_leaderboard = DeepRL_Leaderboard()
rl_leaderboard.add_leaderboad('CarRacing-v0'," The Car Racing ποΈ Leaderboard π")
rl_leaderboard.add_leaderboad('MountainCar-v0',"The Mountain Car β°οΈ π Leaderboard π")
rl_leaderboard.add_leaderboad('LunarLander-v2',"The Lunar Lander π Leaderboard π")
rl_leaderboard.add_leaderboad('BipedalWalker-v3',"The BipedalWalker Leaderboard π")
rl_leaderboard.add_leaderboad('Taxi-v3','The Taxi-v3π Leaderboard π')
rl_leaderboard.add_leaderboad('FrozenLake-v1-4x4-no_slippery','The FrozenLake-v1-4x4-no_slippery Leaderboard π')
rl_leaderboard.add_leaderboad('FrozenLake-v1-8x8-no_slippery','The FrozenLake-v1-8x8-no_slippery Leaderboard π')
rl_leaderboard.add_leaderboad('FrozenLake-v1-4x4','The FrozenLake-v1-4x4 Leaderboard π')
rl_leaderboard.add_leaderboad('FrozenLake-v1-8x8','The FrozenLake-v1-8x8 Leaderboard π')
RL_ENVS = rl_leaderboard.get_ids()
RL_DETAILS = rl_leaderboard.get_data()
def update_data(rl_env):
global LOADED_MODEL_IDS
data = []
model_ids = [x for x in get_model_ids(rl_env) if x not in LOADED_MODEL_IDS[rl_env]]
LOADED_MODEL_IDS[rl_env]+=model_ids
for model_id in tqdm(model_ids):
meta = get_metadata(model_id)
if meta is None:
continue
user_id = model_id.split('/')[0]
row = {}
row["User"] = user_id
row["Model"] = model_id
accuracy = parse_metrics_accuracy(meta)
mean_reward, std_reward = parse_rewards(accuracy)
row["Results"] = mean_reward - std_reward
row["Mean Reward"] = mean_reward
row["Std Reward"] = std_reward
data.append(row)
return pd.DataFrame.from_records(data)
def update_data_per_env(rl_env):
global RL_DETAILS
_,old_dataframe,_ = RL_DETAILS[rl_env]['data']
new_dataframe = update_data(rl_env)
new_dataframe = new_dataframe.fillna("")
if not new_dataframe.empty:
new_dataframe["User"] = new_dataframe["User"].apply(make_clickable_user)
new_dataframe["Model"] = new_dataframe["Model"].apply(make_clickable_model)
dataframe = pd.concat([old_dataframe,new_dataframe])
if not dataframe.empty:
dataframe = dataframe.sort_values(by=['Results'], ascending=False)
if not 'Ranking' in dataframe.columns:
dataframe.insert(0, 'Ranking', [i for i in range(1,len(dataframe)+1)])
else:
dataframe['Ranking'] = [i for i in range(1,len(dataframe)+1)]
table_html = dataframe.to_html(escape=False, index=False,justify = 'left')
return table_html,dataframe,dataframe.empty
else:
html = """<div style="color: green">
<p> β Please wait. Results will be out soon... </p>
</div>
"""
return html,dataframe,dataframe.empty
def get_info_display(len_dataframe,env_name,name_leaderboard,is_empty):
if not is_empty:
markdown = """
<div class='infoPoint'>
<h1> {name_leaderboard} </h1>
<br>
<p> This is a leaderboard of <b>{len_dataframe}</b> agents playing {env_name} π©βπ. </p>
<br>
<p> We use lower bound result to sort the models: mean_reward - std_reward. </p>
<br>
<p> You can click on the model's name to be redirected to its model card which includes documentation. </p>
<br>
<p> You want to try your model? Read this <a href="https://github.com/huggingface/deep-rl-class/blob/Unit1/unit1/README.md" target="_blank">Unit 1</a> of Deep Reinforcement Learning Class.
</p>
</div>
""".format(len_dataframe = len_dataframe,env_name = env_name,name_leaderboard = name_leaderboard)
else:
markdown = """
<div class='infoPoint'>
<h1> {name_leaderboard} </h1>
<br>
</div>
""".format(name_leaderboard = name_leaderboard)
return markdown
def reload_all_data():
global RL_DETAILS,RL_ENVS
for rl_env in RL_ENVS:
RL_DETAILS[rl_env]['data'] = update_data_per_env(rl_env)
html = """<div style="color: green">
<p> β
Leaderboard updated! Click `Reload Leaderboard` to see the current leaderboard.</p>
</div>
"""
return html
def reload_leaderboard(rl_env):
global RL_DETAILS
data_html,data_dataframe,is_empty = RL_DETAILS[rl_env]['data']
markdown = get_info_display(len(data_dataframe),rl_env,RL_DETAILS[rl_env]['title'],is_empty)
return markdown,data_html
block = gr.Blocks(css=BLOCK_CSS)
with block:
notification = gr.HTML("""<div style="color: green">
<p> β Updating leaderboard... </p>
</div>
""")
block.load(reload_all_data,[],[notification])
with gr.Tabs():
for rl_env in RL_ENVS:
with gr.TabItem(rl_env) as rl_tab:
data_html,data_dataframe,is_empty = RL_DETAILS[rl_env]['data']
markdown = get_info_display(len(data_dataframe),rl_env,RL_DETAILS[rl_env]['title'],is_empty)
env_state =gr.Variable(default_value=rl_env)
output_markdown = gr.HTML(markdown)
reload = gr.Button('Reload Leaderboard')
output_html = gr.HTML(data_html)
reload.click(reload_leaderboard,inputs=[env_state],outputs=[output_markdown,output_html])
rl_tab.select(reload_leaderboard,inputs=[env_state],outputs=[output_markdown,output_html])
block.launch()
|