File size: 8,180 Bytes
383512a
 
059d8f0
a1f3b5b
383512a
e653f9c
383512a
e653f9c
 
 
059d8f0
 
383512a
e653f9c
383512a
fb67b80
e9f37ce
383512a
 
 
a51fb44
 
 
 
 
 
 
 
383512a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e653f9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
383512a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7216d20
 
 
 
 
 
 
383512a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9f37ce
383512a
 
 
 
e9f37ce
391b960
383512a
 
 
 
e653f9c
383512a
059d8f0
383512a
 
059d8f0
e653f9c
e9f37ce
383512a
 
 
 
 
059d8f0
383512a
059d8f0
 
 
 
383512a
 
059d8f0
 
b9ceb4f
 
059d8f0
 
 
 
e653f9c
383512a
 
 
31d2bda
383512a
 
e653f9c
383512a
 
 
 
 
 
e9f37ce
7fa09dc
059d8f0
383512a
 
059d8f0
383512a
 
 
7e51363
e653f9c
383512a
 
6867483
383512a
 
659a76d
383512a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e653f9c
383512a
 
 
 
 
059d8f0
e653f9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import json

import requests

from datasets import load_dataset

import gradio as gr
from apscheduler.schedulers.background import BackgroundScheduler


from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load
import pandas as pd

from utils import *


block = gr.Blocks()

# Containing the data
rl_envs = [
{
"rl_env_beautiful": "LunarLander-v2 πŸš€",
"rl_env": "LunarLander-v2",
"video_link": "",
"global": None
},    
{
"rl_env_beautiful": "CartPole-v1",
"rl_env": "CartPole-v1",
"video_link": "https://huggingface.co/sb3/ppo-CartPole-v1/resolve/main/replay.mp4",
"global": None
},
{
"rl_env_beautiful": "FrozenLake-v1-4x4-no_slippery ❄️",
"rl_env": "FrozenLake-v1-4x4-no_slippery",
"video_link": "",
"global": None
},
{
"rl_env_beautiful": "FrozenLake-v1-8x8-no_slippery ❄️",
"rl_env": "FrozenLake-v1-8x8-no_slippery",
"video_link": "",
"global": None
},
{
"rl_env_beautiful": "FrozenLake-v1-4x4 ❄️",
"rl_env": "FrozenLake-v1-4x4",
"video_link": "",
"global": None
},
{
"rl_env_beautiful": "FrozenLake-v1-8x8 ❄️",
"rl_env": "FrozenLake-v1-8x8",
"video_link": "",
"global": None
},
{
"rl_env_beautiful": "Taxi-v3 πŸš–",
"rl_env": "Taxi-v3",
"video_link": "",
"global": None
},
{
"rl_env_beautiful": "CarRacing-v0 🏎️",
"rl_env": "CarRacing-v0",
"video_link": "",
"global": None
},
{
"rl_env_beautiful": "MountainCar-v0 ⛰️",
"rl_env": "MountainCar-v0",
"video_link": "",
"global": None
},
{
"rl_env_beautiful": "SpaceInvadersNoFrameskip-v4 πŸ‘Ύ",
"rl_env": "SpaceInvadersNoFrameskip-v4",
"video_link": "",
"global": None
},
{
"rl_env_beautiful": "PongNoFrameskip-v4 🎾",
"rl_env": "PongNoFrameskip-v4",
"video_link": "",
"global": None
},
{
"rl_env_beautiful": "BreakoutNoFrameskip-v4 🧱",
"rl_env": "BreakoutNoFrameskip-v4",
"video_link": "",
"global": None
},
{
"rl_env_beautiful": "QbertNoFrameskip-v4 🐦",
"rl_env": "QbertNoFrameskip-v4",
"video_link": "",
"global": None
},
{
"rl_env_beautiful": "BipedalWalker-v3",
"rl_env": "BipedalWalker-v3",
"video_link": "",
"global": None
},
{
"rl_env_beautiful": "Walker2DBulletEnv-v0",
"rl_env": "Walker2DBulletEnv-v0",
"video_link": "",
"global": None
},
{
"rl_env_beautiful": "AntBulletEnv-v0",
"rl_env": "AntBulletEnv-v0",
"video_link": "",
"global": None
},
{
"rl_env_beautiful": "HalfCheetahBulletEnv-v0",
"rl_env": "HalfCheetahBulletEnv-v0",
"video_link": "",
"global": None
},
{
"rl_env_beautiful": "Pixelcopter-PLE-v0",
"rl_env": "Pixelcopter-PLE-v0",
"video_link": "",
"global": None
}
]



def get_metadata(model_id):
    try:
        readme_path = hf_hub_download(model_id, filename="README.md")
        return metadata_load(readme_path)
    except requests.exceptions.HTTPError:
        # 404 README.md not found
        return None
        
def parse_metrics_accuracy(meta):
    if "model-index" not in meta:
        return None
    result = meta["model-index"][0]["results"]
    metrics = result[0]["metrics"]
    accuracy = metrics[0]["value"]
    return accuracy

# We keep the worst case episode
def parse_rewards(accuracy):
    default_std = -1000
    default_reward=-1000
    if accuracy !=  None:
        accuracy = str(accuracy)
        parsed =  accuracy.split(' +/- ')
        if len(parsed)>1:
            mean_reward = float(parsed[0])
            std_reward =  float(parsed[1])
        elif len(parsed)==1: #only mean reward   
            mean_reward = float(parsed[0])
            std_reward =  float(0)
             
        else: 
            mean_reward = float(default_std)
            std_reward = float(default_reward)

    else:
        mean_reward = float(default_std)
        std_reward = float(default_reward)
    return mean_reward, std_reward


def get_model_ids(rl_env):
    api = HfApi()
    models = api.list_models(filter=rl_env)
    model_ids = [x.modelId for x in models]
    #print(model_ids)
    return model_ids

def get_model_dataframe(rl_env):
    # Get model ids associated with rl_env
    model_ids = get_model_ids(rl_env)
    #print(model_ids)
    data = []
    for model_id in model_ids:
        """
        readme_path = hf_hub_download(model_id, filename="README.md")
        meta = metadata_load(readme_path)
        """
        meta = get_metadata(model_id)
        #LOADED_MODEL_METADATA[model_id] = meta if meta is not None else ''
        if meta is None:
            continue
        user_id = model_id.split('/')[0]
        row = {}
        row["User"] = make_clickable_user(user_id)
        row["Model"] = make_clickable_model(model_id)
        accuracy = parse_metrics_accuracy(meta)
        mean_reward, std_reward = parse_rewards(accuracy)
        mean_reward = mean_reward if not pd.isna(mean_reward) else 0
        std_reward = std_reward if not pd.isna(std_reward) else 0
        row["Results"] = mean_reward - std_reward
        row["Mean Reward"] = mean_reward
        row["Std Reward"] = std_reward
        data.append(row)
    print("DATA", data)
    ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
    print("RANKED", ranked_dataframe)
    return ranked_dataframe
    
    
def rank_dataframe(dataframe):
    #print("DATAFRAME", dataframe)
    dataframe = dataframe.sort_values(by=['Results'], ascending=False)
    if not 'Ranking' in dataframe.columns:
        dataframe.insert(0, 'Ranking', [i for i in range(1,len(dataframe)+1)])
    else:
        dataframe['Ranking'] =   [i for i in range(1,len(dataframe)+1)]
    return dataframe


with block:
    gr.Markdown(f"""
    # πŸ† The Deep Reinforcement Learning Course Leaderboard πŸ† 
    
    This is the leaderboard of trained agents during the Deep Reinforcement Learning Course. A free course from beginner to expert.
    
    Just choose which environment you trained your agent on and with Ctrl+F find your rank πŸ†

    **The leaderboard is updated every hour. If you don't find your model, go to the bottom of the page and click on the refresh button**
    
    We use **lower bound result to sort the models: mean_reward - std_reward.**

    You **can click on the model's name** to be redirected to its model card which includes documentation.
    
    πŸ€– You want to try to train your agents? <a href="https://huggingface.co/deep-rl-course/unit0/introduction?fw=pt" target="_blank"> Check the Hugging Face free Deep Reinforcement Learning Course πŸ€— </a>.
    
    You want to compare two agents? <a href="https://huggingface.co/spaces/ThomasSimonini/Compare-Reinforcement-Learning-Agents" target="_blank">It's possible using this Spaces demo πŸ‘€ </a>.
    
    πŸ”§ There is an **environment missing?** Please open an issue.
    """)
    
    #for rl_env in RL_ENVS:
    for i in range(0, len(rl_envs)):
        rl_env = rl_envs[i]
       
        with gr.TabItem(rl_env["rl_env_beautiful"]) as rl_tab:
            with gr.Row():
                markdown = """
                    # {name_leaderboard}
                    
                    """.format(name_leaderboard = rl_env["rl_env_beautiful"], video_link = rl_env["video_link"])
                gr.Markdown(markdown)
            with gr.Row():
                rl_env["global"] = gr.components.Dataframe(value= get_model_dataframe(rl_env["rl_env"]), headers=["Ranking πŸ†", "User πŸ€—", "Model id πŸ€–", "Results", "Mean Reward", "Std Reward"], datatype=["number", "markdown", "markdown", "number", "number", "number"])
            with gr.Row():
                data_run = gr.Button("Refresh")
                #print("rl_env", rl_env["rl_env"])
                val = gr.Variable(value=[rl_env["rl_env"]])
                data_run.click(get_model_dataframe, inputs=[val], outputs =rl_env["global"])
            
                       
block.launch()

def refresh_leaderboard():
    """
    Here we refresh the leaderboard:
    we update the rl_env["global"] for each rl_envs in rl_env
    """
    for i in range(0, len(rl_envs)):
        rl_env = rl_envs[i]
        temp = get_model_dataframe(rl_env)
        rl_env["global"] = temp
    print("The leaderboard has been updated")

scheduler = BackgroundScheduler()
# Refresh every hour
scheduler.add_job(func=refresh_leaderboard, trigger="interval", seconds=3600)
scheduler.start()