Spaces:
Runtime error
Runtime error
import requests | |
import pandas as pd | |
from tqdm.auto import tqdm | |
from utils import * | |
import gradio as gr | |
from huggingface_hub import HfApi, hf_hub_download | |
from huggingface_hub.repocard import metadata_load | |
class DeepRL_Leaderboard: | |
def __init__(self) -> None: | |
self.leaderboard= {} | |
def add_leaderboard(self,id=None, title=None): | |
if id is not None and title is not None: | |
id = id.strip() | |
title = title.strip() | |
self.leaderboard.update({id:{'title':title,'data':get_data_per_env(id)}}) | |
def get_data(self): | |
return self.leaderboard | |
def get_ids(self): | |
return list(self.leaderboard.keys()) | |
# CSS file for the | |
with open('app.css','r') as f: | |
BLOCK_CSS = f.read() | |
LOADED_MODEL_IDS = {} | |
LOADED_MODEL_METADATA = {} | |
def get_data(rl_env): | |
global LOADED_MODEL_IDS ,LOADED_MODEL_METADATA | |
data = [] | |
model_ids = get_model_ids(rl_env) | |
LOADED_MODEL_IDS[rl_env]=model_ids | |
for model_id in tqdm(model_ids): | |
meta = get_metadata(model_id) | |
LOADED_MODEL_METADATA[model_id] = meta if meta is not None else '' | |
if meta is None: | |
continue | |
user_id = model_id.split('/')[0] | |
row = {} | |
row["User"] = user_id | |
row["Model"] = model_id | |
accuracy = parse_metrics_accuracy(meta) | |
mean_reward, std_reward = parse_rewards(accuracy) | |
mean_reward = mean_reward if not pd.isna(mean_reward) else 0 | |
std_reward = std_reward if not pd.isna(std_reward) else 0 | |
row["Results"] = mean_reward - std_reward | |
row["Mean Reward"] = mean_reward | |
row["Std Reward"] = std_reward | |
data.append(row) | |
return pd.DataFrame.from_records(data) | |
def get_data_per_env(rl_env): | |
dataframe = get_data(rl_env) | |
dataframe = dataframe.fillna("") | |
if not dataframe.empty: | |
# turn the model ids into clickable links | |
dataframe["User"] = dataframe["User"].apply(make_clickable_user) | |
dataframe["Model"] = dataframe["Model"].apply(make_clickable_model) | |
dataframe = dataframe.sort_values(by=['Results'], ascending=False) | |
if not 'Ranking' in dataframe.columns: | |
dataframe.insert(0, 'Ranking', [i for i in range(1,len(dataframe)+1)]) | |
else: | |
dataframe['Ranking'] = [i for i in range(1,len(dataframe)+1)] | |
table_html = dataframe.to_html(escape=False, index=False,justify = 'left') | |
return table_html,dataframe,dataframe.empty | |
else: | |
html = """<div style="color: green"> | |
<p> β Please wait. Results will be out soon... </p> | |
</div> | |
""" | |
return html,dataframe,dataframe.empty | |
rl_leaderboard = DeepRL_Leaderboard() | |
rl_leaderboard.add_leaderboard('CartPole-v1','The Cartpole-v1 Leaderboard') | |
rl_leaderboard.add_leaderboard('LunarLander-v2',"The Lunar Lander π Leaderboard") | |
rl_leaderboard.add_leaderboard('FrozenLake-v1-4x4-no_slippery','The FrozenLake-v1-4x4-no_slippery Leaderboard') | |
rl_leaderboard.add_leaderboard('FrozenLake-v1-8x8-no_slippery','The FrozenLake-v1-8x8-no_slippery Leaderboard') | |
rl_leaderboard.add_leaderboard('FrozenLake-v1-4x4','The FrozenLake-v1-4x4 Leaderboard') | |
rl_leaderboard.add_leaderboard('FrozenLake-v1-8x8','The FrozenLake-v1-8x8 Leaderboard') | |
rl_leaderboard.add_leaderboard('Taxi-v3','The Taxi-v3π Leaderboard') | |
rl_leaderboard.add_leaderboard('CarRacing-v0'," The Car Racing ποΈ Leaderboard") | |
rl_leaderboard.add_leaderboard('MountainCar-v0',"The Mountain Car β°οΈ π Leaderboard") | |
rl_leaderboard.add_leaderboard('BipedalWalker-v3',"The BipedalWalker Leaderboard") | |
rl_leaderboard.add_leaderboard('SpaceInvadersNoFrameskip-v4','The SpaceInvadersNoFrameskip-v4 Leaderboard') | |
rl_leaderboard.add_leaderboard('Pong-PLE-v0','The Pong-PLE-v0 πΎ Leaderboard') | |
rl_leaderboard.add_leaderboard('Walker2DBulletEnv-v0','The Walker2DBulletEnv-v0 π€ Leaderboard') | |
rl_leaderboard.add_leaderboard('AntBulletEnv-v0','The AntBulletEnv-v0 πΈοΈ Leaderboard') | |
rl_leaderboard.add_leaderboard('HalfCheetahBulletEnv-v0','The HalfCheetahBulletEnv-v0 π€ Leaderboard') | |
RL_ENVS = rl_leaderboard.get_ids() | |
RL_DETAILS = rl_leaderboard.get_data() | |
def update_data(rl_env): | |
global LOADED_MODEL_IDS,LOADED_MODEL_METADATA | |
data = [] | |
model_ids = [x for x in get_model_ids(rl_env)] #if x not in LOADED_MODEL_IDS[rl_env]] # For now let's update all | |
LOADED_MODEL_IDS[rl_env]+=model_ids | |
for model_id in tqdm(model_ids): | |
meta = get_metadata(model_id) | |
LOADED_MODEL_METADATA[model_id] = meta if meta is not None else '' | |
if meta is None: | |
continue | |
user_id = model_id.split('/')[0] | |
row = {} | |
row["User"] = user_id | |
row["Model"] = model_id | |
accuracy = parse_metrics_accuracy(meta) | |
mean_reward, std_reward = parse_rewards(accuracy) | |
mean_reward = mean_reward if not pd.isna(mean_reward) else 0 | |
std_reward = std_reward if not pd.isna(std_reward) else 0 | |
row["Results"] = mean_reward - std_reward | |
row["Mean Reward"] = mean_reward | |
row["Std Reward"] = std_reward | |
data.append(row) | |
return pd.DataFrame.from_records(data) | |
def update_data_per_env(rl_env): | |
global RL_DETAILS | |
_,old_dataframe,_ = RL_DETAILS[rl_env]['data'] | |
new_dataframe = update_data(rl_env) | |
new_dataframe = new_dataframe.fillna("") | |
if not new_dataframe.empty: | |
new_dataframe["User"] = new_dataframe["User"].apply(make_clickable_user) | |
new_dataframe["Model"] = new_dataframe["Model"].apply(make_clickable_model) | |
dataframe = pd.concat([old_dataframe,new_dataframe]) | |
if not dataframe.empty: | |
dataframe = dataframe.sort_values(by=['Results'], ascending=False) | |
if not 'Ranking' in dataframe.columns: | |
dataframe.insert(0, 'Ranking', [i for i in range(1,len(dataframe)+1)]) | |
else: | |
dataframe['Ranking'] = [i for i in range(1,len(dataframe)+1)] | |
table_html = dataframe.to_html(escape=False, index=False,justify = 'left') | |
return table_html,dataframe,dataframe.empty | |
else: | |
html = """<div style="color: green"> | |
<p> β Please wait. Results will be out soon... </p> | |
</div> | |
""" | |
return html,dataframe,dataframe.empty | |
def get_info_display(dataframe,env_name,name_leaderboard,is_empty): | |
if not is_empty: | |
markdown = """ | |
<div class='infoPoint'> | |
<h1> {name_leaderboard} </h1> | |
<br> | |
<p> This is a leaderboard of <b>{len_dataframe}</b> agents, from <b>{num_unique_users}</b> unique users, playing {env_name} π©βπ. </p> | |
<br> | |
<p> We use <b>lower bound result to sort the models: mean_reward - std_reward.</b> </p> | |
<br> | |
<p> You can click on the model's name to be redirected to its model card which includes documentation. </p> | |
<br> | |
<p> You want to try to train your agents? <a href="http://eepurl.com/h1pElX" target="_blank">Sign up to the Hugging Face free Deep Reinforcement Learning Class π€ </a>. | |
</p> | |
<br> | |
<p> You want to compare two agents? <a href="https://huggingface.co/spaces/ThomasSimonini/Compare-Reinforcement-Learning-Agents" target="_blank">It's possible using this Spaces demo π </a>. | |
</p> | |
</div> | |
""".format(len_dataframe = len(dataframe),env_name = env_name,name_leaderboard = name_leaderboard,num_unique_users = len(set(dataframe['User'].values))) | |
else: | |
markdown = """ | |
<div class='infoPoint'> | |
<h1> {name_leaderboard} </h1> | |
<br> | |
</div> | |
""".format(name_leaderboard = name_leaderboard) | |
return markdown | |
def reload_all_data(): | |
global RL_DETAILS,RL_ENVS | |
for rl_env in RL_ENVS: | |
RL_DETAILS[rl_env]['data'] = update_data_per_env(rl_env) | |
html = """<div style="color: green"> | |
<p> β Leaderboard updated! </p> | |
</div> | |
""" | |
return html | |
def reload_leaderboard(rl_env): | |
global RL_DETAILS | |
data_html,data_dataframe,is_empty = RL_DETAILS[rl_env]['data'] | |
markdown = get_info_display(data_dataframe,rl_env,RL_DETAILS[rl_env]['title'],is_empty) | |
return markdown,data_html | |
block = gr.Blocks(css=BLOCK_CSS) | |
with block: | |
notification = gr.HTML("""<div style="color: green"> | |
<p> β Updating leaderboard... </p> | |
</div> | |
""") | |
block.load(reload_all_data,[],[notification]) | |
with gr.Tabs(): | |
for rl_env in RL_ENVS: | |
with gr.TabItem(rl_env) as rl_tab: | |
data_html,data_dataframe,is_empty = RL_DETAILS[rl_env]['data'] | |
markdown = get_info_display(data_dataframe,rl_env,RL_DETAILS[rl_env]['title'],is_empty) | |
env_state =gr.Variable(value=f'\"{rl_env}\"') | |
output_markdown = gr.HTML(markdown) | |
output_html = gr.HTML(data_html) | |
rl_tab.select(reload_leaderboard,inputs=[env_state],outputs=[output_markdown,output_html]) | |
block.launch() | |