Spaces:
Runtime error
Runtime error
import os | |
import json | |
import requests | |
import gradio as gr | |
import pandas as pd | |
from huggingface_hub import HfApi, hf_hub_download, snapshot_download | |
from huggingface_hub.repocard import metadata_load | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from utils import * | |
DATASET_REPO_URL = "https://huggingface.co/datasets/huggingface-projects/drlc-leaderboard-data" | |
DATASET_REPO_ID = "huggingface-projects/drlc-leaderboard-data" | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
block = gr.Blocks() | |
api = HfApi(token=HF_TOKEN) | |
# Containing the data | |
rl_envs = [ | |
{ | |
"rl_env_beautiful": "LunarLander-v2 π", | |
"rl_env": "LunarLander-v2", | |
"video_link": "", | |
"global": None | |
}, | |
{ | |
"rl_env_beautiful": "CartPole-v1", | |
"rl_env": "CartPole-v1", | |
"video_link": "https://huggingface.co/sb3/ppo-CartPole-v1/resolve/main/replay.mp4", | |
"global": None | |
}, | |
{ | |
"rl_env_beautiful": "FrozenLake-v1-4x4-no_slippery βοΈ", | |
"rl_env": "FrozenLake-v1-4x4-no_slippery", | |
"video_link": "", | |
"global": None | |
}, | |
{ | |
"rl_env_beautiful": "FrozenLake-v1-8x8-no_slippery βοΈ", | |
"rl_env": "FrozenLake-v1-8x8-no_slippery", | |
"video_link": "", | |
"global": None | |
}, | |
{ | |
"rl_env_beautiful": "FrozenLake-v1-4x4 βοΈ", | |
"rl_env": "FrozenLake-v1-4x4", | |
"video_link": "", | |
"global": None | |
}, | |
{ | |
"rl_env_beautiful": "FrozenLake-v1-8x8 βοΈ", | |
"rl_env": "FrozenLake-v1-8x8", | |
"video_link": "", | |
"global": None | |
}, | |
{ | |
"rl_env_beautiful": "Taxi-v3 π", | |
"rl_env": "Taxi-v3", | |
"video_link": "", | |
"global": None | |
}, | |
{ | |
"rl_env_beautiful": "CarRacing-v0 ποΈ", | |
"rl_env": "CarRacing-v0", | |
"video_link": "", | |
"global": None | |
}, | |
{ | |
"rl_env_beautiful": "MountainCar-v0 β°οΈ", | |
"rl_env": "MountainCar-v0", | |
"video_link": "", | |
"global": None | |
}, | |
{ | |
"rl_env_beautiful": "SpaceInvadersNoFrameskip-v4 πΎ", | |
"rl_env": "SpaceInvadersNoFrameskip-v4", | |
"video_link": "", | |
"global": None | |
}, | |
{ | |
"rl_env_beautiful": "PongNoFrameskip-v4 πΎ", | |
"rl_env": "PongNoFrameskip-v4", | |
"video_link": "", | |
"global": None | |
}, | |
{ | |
"rl_env_beautiful": "BreakoutNoFrameskip-v4 π§±", | |
"rl_env": "BreakoutNoFrameskip-v4", | |
"video_link": "", | |
"global": None | |
}, | |
{ | |
"rl_env_beautiful": "QbertNoFrameskip-v4 π¦", | |
"rl_env": "QbertNoFrameskip-v4", | |
"video_link": "", | |
"global": None | |
}, | |
{ | |
"rl_env_beautiful": "BipedalWalker-v3", | |
"rl_env": "BipedalWalker-v3", | |
"video_link": "", | |
"global": None | |
}, | |
{ | |
"rl_env_beautiful": "Walker2DBulletEnv-v0", | |
"rl_env": "Walker2DBulletEnv-v0", | |
"video_link": "", | |
"global": None | |
}, | |
{ | |
"rl_env_beautiful": "AntBulletEnv-v0", | |
"rl_env": "AntBulletEnv-v0", | |
"video_link": "", | |
"global": None | |
}, | |
{ | |
"rl_env_beautiful": "HalfCheetahBulletEnv-v0", | |
"rl_env": "HalfCheetahBulletEnv-v0", | |
"video_link": "", | |
"global": None | |
}, | |
{ | |
"rl_env_beautiful": "PandaReachDense-v2", | |
"rl_env": "PandaReachDense-v2", | |
"video_link": "", | |
"global": None | |
}, | |
{ | |
"rl_env_beautiful": "Pixelcopter-PLE-v0", | |
"rl_env": "Pixelcopter-PLE-v0", | |
"video_link": "", | |
"global": None | |
} | |
] | |
def get_metadata(model_id): | |
try: | |
readme_path = hf_hub_download(model_id, filename="README.md") | |
return metadata_load(readme_path) | |
except requests.exceptions.HTTPError: | |
# 404 README.md not found | |
return None | |
def parse_metrics_accuracy(meta): | |
if "model-index" not in meta: | |
return None | |
result = meta["model-index"][0]["results"] | |
metrics = result[0]["metrics"] | |
accuracy = metrics[0]["value"] | |
return accuracy | |
# We keep the worst case episode | |
def parse_rewards(accuracy): | |
default_std = -1000 | |
default_reward=-1000 | |
if accuracy != None: | |
accuracy = str(accuracy) | |
parsed = accuracy.split(' +/- ') | |
if len(parsed)>1: | |
mean_reward = float(parsed[0]) | |
std_reward = float(parsed[1]) | |
elif len(parsed)==1: #only mean reward | |
mean_reward = float(parsed[0]) | |
std_reward = float(0) | |
else: | |
mean_reward = float(default_std) | |
std_reward = float(default_reward) | |
else: | |
mean_reward = float(default_std) | |
std_reward = float(default_reward) | |
return mean_reward, std_reward | |
def get_model_ids(rl_env): | |
api = HfApi() | |
models = api.list_models(filter=rl_env) | |
model_ids = [x.modelId for x in models] | |
return model_ids | |
def update_leaderboard_dataset(rl_env, path): | |
# Get model ids associated with rl_env | |
model_ids = get_model_ids(rl_env) | |
data = [] | |
for model_id in model_ids: | |
""" | |
readme_path = hf_hub_download(model_id, filename="README.md") | |
meta = metadata_load(readme_path) | |
""" | |
meta = get_metadata(model_id) | |
#LOADED_MODEL_METADATA[model_id] = meta if meta is not None else '' | |
if meta is None: | |
continue | |
user_id = model_id.split('/')[0] | |
row = {} | |
row["User"] = user_id | |
row["Model"] = model_id | |
accuracy = parse_metrics_accuracy(meta) | |
mean_reward, std_reward = parse_rewards(accuracy) | |
mean_reward = mean_reward if not pd.isna(mean_reward) else 0 | |
std_reward = std_reward if not pd.isna(std_reward) else 0 | |
row["Results"] = mean_reward - std_reward | |
row["Mean Reward"] = mean_reward | |
row["Std Reward"] = std_reward | |
data.append(row) | |
ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data)) | |
new_history = ranked_dataframe | |
file_path = path + "/" + rl_env + ".csv" | |
new_history.to_csv(file_path, index=False) | |
return ranked_dataframe | |
def download_leaderboard_dataset(): | |
path = snapshot_download(repo_id=DATASET_REPO_ID, repo_type="dataset") | |
return path | |
def get_data(rl_env, path) -> pd.DataFrame: | |
""" | |
Get data from rl_env | |
:return: data as a pandas DataFrame | |
""" | |
csv_path = path + "/" + rl_env + ".csv" | |
data = pd.read_csv(csv_path) | |
for index, row in data.iterrows(): | |
user_id = row["User"] | |
data.loc[index, "User"] = make_clickable_user(user_id) | |
model_id = row["Model"] | |
data.loc[index, "Model"] = make_clickable_model(model_id) | |
return data | |
def get_data_no_html(rl_env, path) -> pd.DataFrame: | |
""" | |
Get data from rl_env | |
:return: data as a pandas DataFrame | |
""" | |
csv_path = path + "/" + rl_env + ".csv" | |
data = pd.read_csv(csv_path) | |
return data | |
def rank_dataframe(dataframe): | |
dataframe = dataframe.sort_values(by=['Results'], ascending=False) | |
if not 'Ranking' in dataframe.columns: | |
dataframe.insert(0, 'Ranking', [i for i in range(1,len(dataframe)+1)]) | |
else: | |
dataframe['Ranking'] = [i for i in range(1,len(dataframe)+1)] | |
return dataframe | |
def run_update_dataset(): | |
path_ = download_leaderboard_dataset() | |
for i in range(0, len(rl_envs)): | |
rl_env = rl_envs[i] | |
update_leaderboard_dataset(rl_env["rl_env"], path_) | |
api.upload_folder( | |
folder_path=path_, | |
repo_id="huggingface-projects/drlc-leaderboard-data", | |
repo_type="dataset", | |
commit_message="Update dataset") | |
def filter_data(rl_env, path, user_id): | |
print("RL ENV", rl_env) | |
print("PATH", path) | |
print("USER ID", user_id) | |
data_df = get_data_no_html(rl_env, path) | |
print(data_df) | |
models = [] | |
models = data_df[data_df["User"] == user_id] | |
for index, row in models.iterrows(): | |
user_id = row["User"] | |
models.loc[index, "User"] = make_clickable_user(user_id) | |
model_id = row["Model"] | |
models.loc[index, "Model"] = make_clickable_model(model_id) | |
print(models) | |
return models | |
run_update_dataset() | |
with block: | |
gr.Markdown(f""" | |
# π The Deep Reinforcement Learning Course Leaderboard π | |
This is the leaderboard of trained agents during the <a href="https://huggingface.co/learn/deep-rl-course/unit0/introduction?fw=pt">Deep Reinforcement Learning Course</a>. A free course from beginner to expert. | |
### We only display the best 100 models | |
If you want to **find yours, type your user id and click on Search my models.** | |
You **can click on the model's name** to be redirected to its model card, including documentation. | |
### How are the results calculated? | |
We use **lower bound result to sort the models: mean_reward - std_reward.** | |
### I can't find my model π | |
The leaderboard is **updated every hour** if you can't find your models, just wait for the next update. | |
### The Deep RL Course | |
π€ You want to try to train your agents? <a href="https://huggingface.co/deep-rl-course/unit0/introduction?fw=pt" target="_blank"> Check the Hugging Face free Deep Reinforcement Learning Course π€ </a>. | |
π§ There is an **environment missing?** Please open an issue. | |
""") | |
path_ = download_leaderboard_dataset() | |
for i in range(0, len(rl_envs)): | |
rl_env = rl_envs[i] | |
with gr.TabItem(rl_env["rl_env_beautiful"]) as rl_tab: | |
with gr.Row(): | |
markdown = """ | |
# {name_leaderboard} | |
""".format(name_leaderboard = rl_env["rl_env_beautiful"], video_link = rl_env["video_link"]) | |
gr.Markdown(markdown) | |
with gr.Row(): | |
gr.Markdown(""" | |
## Search your models | |
Simply type your user id to find your models | |
""") | |
with gr.Row(): | |
user_id = gr.Textbox(label= "Your user id") | |
search_btn = gr.Button("Search my models π") | |
reset_btn = gr.Button("Clear my search") | |
env = gr.Variable(rl_env["rl_env"]) | |
grpath = gr.Variable(path_) | |
with gr.Row(): | |
gr_dataframe = gr.components.Dataframe(value=get_data(rl_env["rl_env"], path_), headers=["Ranking π", "User π€", "Model id π€", "Results", "Mean Reward", "Std Reward"], datatype=["number", "markdown", "markdown", "number", "number", "number"], row_count=(100, 'fixed')) | |
with gr.Row(): | |
#gr_search_dataframe = gr.components.Dataframe(headers=["Ranking π", "User π€", "Model id π€", "Results", "Mean Reward", "Std Reward"], datatype=["number", "markdown", "markdown", "number", "number", "number"], visible=False) | |
search_btn.click(fn=filter_data, inputs=[env, grpath, user_id], outputs=gr_dataframe, api_name="filter_data") | |
with gr.Row(): | |
search_btn.click(fn=filter_data, inputs=[env, grpath, user_id], outputs=gr_dataframe, api_name="filter_data") | |
reset_btn.click(fn=get_data, inputs=[env, grpath], outputs=gr_dataframe, api_name="get_data") | |
scheduler = BackgroundScheduler() | |
# Refresh every hour | |
scheduler.add_job(func=run_update_dataset, trigger="interval", seconds=3600) | |
scheduler.start() | |
block.launch() | |