Spaces:
Runtime error
Runtime error
import requests | |
import pandas as pd | |
from tqdm.auto import tqdm | |
import gradio as gr | |
from huggingface_hub import HfApi, hf_hub_download | |
from huggingface_hub.repocard import metadata_load | |
# Based on Omar Sanseviero work | |
# Make model clickable link | |
def make_clickable_model(model_name): | |
link = "https://huggingface.co/" + model_name | |
return f'<a style="text-decoration: underline; color: #1f3b54 " target="_blank" href="{link}">{model_name}</a>' | |
# Make user clickable link | |
def make_clickable_user(user_id): | |
link = "https://huggingface.co/" + user_id | |
return f'<a style="text-decoration: underline; color: #1f3b54 " target="_blank" href="{link}">{user_id}</a>' | |
def get_model_ids(rl_env): | |
api = HfApi() | |
models = api.list_models(filter=rl_env) | |
model_ids = [x.modelId for x in models] | |
return model_ids | |
def get_metadata(model_id): | |
try: | |
readme_path = hf_hub_download(model_id, filename="README.md") | |
return metadata_load(readme_path) | |
except requests.exceptions.HTTPError: | |
# 404 README.md not found | |
return None | |
def parse_metrics_accuracy(meta): | |
if "model-index" not in meta: | |
return None | |
result = meta["model-index"][0]["results"] | |
metrics = result[0]["metrics"] | |
accuracy = metrics[0]["value"] | |
print("ACCURACY", accuracy) | |
return accuracy | |
# We keep the worst case episode | |
def parse_rewards(accuracy): | |
if accuracy != None: | |
parsed = accuracy.split(' +/- ') | |
mean_reward = float(parsed[0]) | |
std_reward = float(parsed[1]) | |
else: | |
mean_reward = -1000 | |
std_reward = -1000 | |
return mean_reward, std_reward | |
def get_data(rl_env): | |
data = [] | |
model_ids = get_model_ids(rl_env) | |
for model_id in tqdm(model_ids): | |
meta = get_metadata(model_id) | |
if meta is None: | |
continue | |
user_id = model_id.split('/')[0] | |
row = {} | |
row["User"] = user_id | |
row["Model"] = model_id | |
accuracy = parse_metrics_accuracy(meta) | |
print("RETURNED ACCURACY", accuracy) | |
mean_reward, std_reward = parse_rewards(accuracy) | |
print("MEAN REWARD", mean_reward) | |
row["Results"] = mean_reward - std_reward | |
row["Mean Reward"] = mean_reward | |
row["Std Reward"] = std_reward | |
data.append(row) | |
return pd.DataFrame.from_records(data) | |
def get_data_per_env(rl_env): | |
dataframe = get_data(rl_env) | |
dataframe = dataframe.fillna("") | |
if not dataframe.empty: | |
# turn the model ids into clickable links | |
dataframe["User"] = dataframe["User"].apply(make_clickable_user) | |
dataframe["Model"] = dataframe["Model"].apply(make_clickable_model) | |
dataframe = dataframe.sort_values(by=['Results'], ascending=False) | |
table_html = dataframe.to_html(escape=False, index=False) | |
table_html = table_html.replace("<table>", '<table style="width: 100%; margin: auto; border:0.5px solid; border-spacing: 7px 0px">') # center-align the headers | |
table_html = table_html.replace("<thead>", '<thead align="center">') # center-align the headers | |
table_html = "<div style='text-align: center ; width:100%'>"+table_html+"</div>" | |
return table_html,dataframe,dataframe.empty | |
else: | |
html = """<div style="color: green"> | |
<p> β Please wait. Results will be out soon... </p> | |
</div> | |
""" | |
return html,dataframe,dataframe.empty | |
RL_ENVS = ['LunarLander-v2','CarRacing-v0','MountainCar-v0'] | |
RL_DETAILS ={'CarRacing-v0':{'title':" The Car Racing ποΈ Leaderboard π",'data':get_data_per_env('CarRacing-v0')}, | |
'MountainCar-v0':{'title':"The Mountain Car β°οΈ π Leaderboard π",'data':get_data_per_env('MountainCar-v0')}, | |
'LunarLander-v2':{'title':" The Lunar Lander π Leaderboard π",'data':get_data_per_env('LunarLander-v2')} | |
} | |
block = gr.Blocks() | |
with block: | |
with gr.Tabs(): | |
for rl_env in RL_ENVS: | |
with gr.TabItem(rl_env): | |
data_html,data_dataframe,is_empty = RL_DETAILS[rl_env]['data'] | |
if not is_empty: | |
markdown = """ | |
# {name_leaderboard} | |
This is a leaderboard of **{len_dataframe}** agents playing {env_name} π©βπ. | |
We use lower bound result to sort the models: mean_reward - std_reward. | |
You can click on the model's name to be redirected to its model card which includes documentation. | |
You want to try your model? Read this [Unit 1](https://github.com/huggingface/deep-rl-class/blob/Unit1/unit1/README.md) of Deep Reinforcement Learning Class. | |
""".format(len_dataframe = len(data_dataframe),env_name = rl_env,name_leaderboard = RL_DETAILS[rl_env]['title']) | |
else: | |
markdown = """ | |
# {name_leaderboard} | |
""".format(name_leaderboard = RL_DETAILS[rl_env]['title']) | |
gr.Markdown(markdown) | |
gr.HTML(data_html) | |
block.launch() | |