import requests import json import pandas as pd from tqdm.auto import tqdm import gradio as gr #import streamlit as st from huggingface_hub import HfApi, hf_hub_download from huggingface_hub.repocard import metadata_load #import streamlit.components.v1 as components # Based on Omar Sanseviero work # Make model clickable link def make_clickable_model(model_name): link = "https://huggingface.co/" + model_name return f'{model_name}' # Make user clickable link def make_clickable_user(user_id): link = "https://huggingface.co/" + user_id return f'{user_id}' def get_model_ids(rl_env): api = HfApi() models = api.list_models(filter=rl_env) model_ids = [x.modelId for x in models] return model_ids def get_metadata(model_id): try: readme_path = hf_hub_download(model_id, filename="README.md") return metadata_load(readme_path) except requests.exceptions.HTTPError: # 404 README.md not found return None def parse_metrics_accuracy(meta): if "model-index" not in meta: return None result = meta["model-index"][0]["results"] metrics = result[0]["metrics"] accuracy = metrics[0]["value"] print("ACCURACY", accuracy) return accuracy # We keep the worst case episode def parse_rewards(accuracy): if accuracy != None: parsed = accuracy.split(' +/- ') mean_reward = float(parsed[0]) std_reward = float(parsed[1]) else: mean_reward = -1000 std_reward = -1000 return mean_reward, std_reward def get_data(rl_env): data = [] model_ids = get_model_ids(rl_env) for model_id in tqdm(model_ids): meta = get_metadata(model_id) if meta is None: continue user_id = model_id.split('/')[0] row = {} row["User"] = user_id row["Model"] = model_id accuracy = parse_metrics_accuracy(meta) print("RETURNED ACCURACY", accuracy) mean_reward, std_reward = parse_rewards(accuracy) print("MEAN REWARD", mean_reward) row["Results"] = mean_reward - std_reward row["Mean Reward"] = mean_reward row["Std Reward"] = std_reward data.append(row) return pd.DataFrame.from_records(data) def get_data_per_env(rl_env): dataframe = get_data(rl_env) dataframe = dataframe.fillna("") #import pdb; pdb.set_trace() if not dataframe.empty: # turn the model ids into clickable links dataframe["User"] = dataframe["User"].apply(make_clickable_user) dataframe["Model"] = dataframe["Model"].apply(make_clickable_model) dataframe = dataframe.sort_values(by=['Results'], ascending=False) table_html = dataframe.to_html(escape=False, index=False) table_html = table_html.replace("", '') # left-align the headers return table_html,dataframe,dataframe.empty else: html = """

⌛ Please wait. Results will be out soon...

""" return html,dataframe,dataframe.empty RL_ENVS = ['CarRacing-v0','MountainCar-v0','LunarLander-v2'] RL_DETAILS ={'CarRacing-v0':{'title':" The Car Racing 🌕 Leaderboard 🚀",'data':get_data_per_env('CarRacing-v0')}, 'MountainCar-v0':{'title':"The Mountain Car 🌕 Leaderboard 🚀",'data':get_data_per_env('MountainCar-v0')}, 'LunarLander-v2':{'title':" The Lunar Lander 🌕 Leaderboard 🚀",'data':get_data_per_env('LunarLander-v2')} } block = gr.Blocks() with block: with gr.Tabs(): for rl_env in RL_ENVS: with gr.TabItem(rl_env): data_html,data_dataframe,is_empty = RL_DETAILS[rl_env]['data'] markdown = """ # {name_leaderboard} This is a leaderboard of {len_dataframe}** agents playing {env_name} 👩‍🚀. We use lower bound result to sort the models: mean_reward - std_reward. You can click on the model's name to be redirected to its model card which includes documentation. You want to try your model? Read this Unit 1 of Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/blob/Unit1/unit1/README.md. """.format(len_dataframe = len(data_dataframe),env_name = rl_env,name_leaderboard = RL_DETAILS[rl_env]['title']) gr.Markdown(markdown) gr.HTML(data_html) block.launch()