Spaces:
Sleeping
Sleeping
from transformer import Transformer | |
import tensorflow_text as tf_text | |
import tensorflow as tf | |
from config import config | |
import h5py | |
def load_transformer(en_emb_matrix, de_emb_matrix, model_path, config): | |
# Initialize and rebuild your Transformer model | |
# (Make sure to replace '...' with actual parameters) | |
model = Transformer( | |
num_layers=config.num_layers, | |
d_model=config.embed_dim, | |
num_heads=config.num_heads, | |
en_embedding_matrix=en_emb_matrix, | |
de_embedding_matrix=de_emb_matrix, | |
dff=config.latent_dim, | |
input_vocab_size=config.vocab_size, | |
target_vocab_size=config.vocab_size, | |
dropout_rate=0.2 | |
) | |
model.load_weights(model_path) | |
return model | |
def load_sp_model(path_en,path_ur): | |
sp_model_en = tf_text.SentencepieceTokenizer(model=tf.io.gfile.GFile(path_en, 'rb').read(),add_bos=True,add_eos=True) | |
sp_model_ur = tf_text.SentencepieceTokenizer(model=tf.io.gfile.GFile(path_ur, 'rb').read(),reverse=True,add_bos=True,add_eos=True) | |
return sp_model_en, sp_model_ur | |
def load_emb(emb_path): | |
with h5py.File(emb_path, 'r') as hf: | |
embedding_matrix = hf['embeddings'][:] | |
return embedding_matrix |