Spaces:
Sleeping
Sleeping
import tensorflow as tf | |
import numpy as np | |
import re | |
from config import config | |
def clean_text(text): | |
text = text.lower() # Lowercase the text | |
text = re.sub(r'^[^\w\s(]+', '', text) # Remove any punctuation at the start of the sentence | |
text = re.sub(r'http\S+|www\S+|https\S+', '', text, flags=re.MULTILINE) # Remove URLs | |
text = re.sub(r"([*'_.,!?؟،۔()])\1+", r'\1', text) # Reduce multiple instances of the same punctuation to one | |
text = re.sub(r'([^\w\s])\1+', r'\1', text) # Reduce sequences of the same non-alphanumeric character (excluding spaces and specific punctuation) to one | |
text = re.sub(r"[^\w,'-.?!؟،۔\s]", '', text) # Remove special characters and symbols | |
text = re.sub(r'\s+', ' ', text).strip() # Remove extra spaces | |
return text | |
class Translator(tf.Module): | |
def __init__(self, sp_model_en, sp_model_ur, transformer): | |
self.sp_model_en = sp_model_en | |
self.sp_model_ur = sp_model_ur | |
self.transformer = transformer | |
def __call__(self, sentence, max_length=config.sequence_length): | |
sentence = clean_text(sentence) | |
sentence = tf.constant(sentence) | |
if len(sentence.shape) == 0: | |
sentence = sentence[tf.newaxis] | |
# Tokenize the English sentence | |
sentence = self.sp_model_en.tokenize(sentence).to_tensor() | |
encoder_input = sentence | |
# Initialize the output for Urdu with `[START]` token | |
start = self.sp_model_ur.tokenize([''])[0][0][tf.newaxis] | |
end = self.sp_model_ur.tokenize([''])[0][1][tf.newaxis] | |
output_array = tf.TensorArray(dtype=tf.int32, size=0, dynamic_size=True) | |
output_array = output_array.write(0, start) | |
for i in tf.range(max_length): | |
output = tf.transpose(output_array.stack()) | |
predictions = self.transformer([encoder_input, output], training=False) | |
predictions = predictions[:, -1:, :] # Shape `(batch_size, 1, vocab_size)` | |
predicted_id = tf.argmax(predictions, axis=-1) | |
predicted_id = tf.cast(predicted_id, tf.int32) | |
output_array = output_array.write(i+1, predicted_id[0]) | |
if predicted_id == end: | |
break | |
output = tf.transpose(output_array.stack()) | |
text = self.sp_model_ur.detokenize(output)[0] # Shape: `()` | |
return text.numpy().decode('utf-8') |