File size: 1,195 Bytes
0be7395 27b1577 bc927a1 187cff1 e8a6471 187cff1 bc927a1 187cff1 bc927a1 187cff1 840d1e4 bc927a1 187cff1 bc927a1 489f634 5b04342 bc927a1 27b1577 e509bb0 bc927a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import gradio as gr
# Load model directly
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("yeye776/t5-OndeviceAI-HomeIoT")
model = AutoModelForSeq2SeqLM.from_pretrained("yeye776/t5-OndeviceAI-HomeIoT")
# Gradio ์ธํฐํ์ด์ค ๊ตฌ์ฑ
def generate_answer(input_text):
# ์
๋ ฅ ํ
์คํธ๋ฅผ ๋ชจ๋ธ ํ ํฌ๋์ด์ ๋ก ํ ํฐํ
input_ids = tokenizer(input_text, max_length=700, return_tensors="pt").input_ids
# ๋ชจ๋ธ ์ถ๋ก
output_ids = model.generate(input_ids, top_k=10, max_length=1024)
# output_ids = model.generate(input_ids, num_beams=10, top_k=10, max_length=1024)
# ๋ชจ๋ธ ์ถ๋ ฅ์ ํ
์คํธ๋ก ๋์ฝ๋ฉ
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return output_text
# Gradio ์ธํฐํ์ด์ค ์ ์
iface = gr.Interface(
fn=generate_answer,
inputs="text",
outputs="text",
title="OnDevice & AI Home IoT",
description="Hugging Face Transformers + Gradio Demo"
)
# Gradio ์ฑ ์์
iface.launch()
# gr.load("models/yeye776/t5-OndeviceAI-HomeIoT").launch()
# iface = gr.Interface(fn=pipe, inputs="text", outputs="text")
# iface.launch() |