Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
# Use a pipeline as a high-level helper
|
3 |
from transformers import pipeline
|
4 |
|
5 |
pipe = pipeline("text2text-generation", model="yeye776/t5-OndeviceAI-HomeIoT")
|
|
|
1 |
+
# import torch
|
2 |
+
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
# import gradio as gr
|
4 |
+
|
5 |
+
# # Load model and tokenizer (using CPU for broader accessibility)
|
6 |
+
# model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype=torch.float32, device_map="cpu", trust_remote_code=True)
|
7 |
+
# tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
|
8 |
+
|
9 |
+
# def generate_text(prompt):
|
10 |
+
# inputs = tokenizer(prompt, return_tensors="pt", return_attention_mask=False)
|
11 |
+
# outputs = model.generate(**inputs, max_length=200)
|
12 |
+
# text = tokenizer.batch_decode(outputs)[0]
|
13 |
+
# return text
|
14 |
+
|
15 |
+
# # Create Gradio interface
|
16 |
+
# iface = gr.Interface(
|
17 |
+
# fn=generate_text,
|
18 |
+
# inputs=[gr.Textbox(lines=5, label="Enter your prompt")],
|
19 |
+
# outputs="text",
|
20 |
+
# title="PHI-2 Text Generator",
|
21 |
+
# description="Generate text using the PHI-2 generative language model",
|
22 |
+
# )
|
23 |
+
|
24 |
+
# # Launch the interface
|
25 |
+
# iface.launch()
|
26 |
+
|
27 |
import gradio as gr
|
|
|
28 |
from transformers import pipeline
|
29 |
|
30 |
pipe = pipeline("text2text-generation", model="yeye776/t5-OndeviceAI-HomeIoT")
|