|
import gradio as gr |
|
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation |
|
import matplotlib.pyplot as plt |
|
from matplotlib import gridspec |
|
import numpy as np |
|
from PIL import Image |
|
import tensorflow as tf |
|
import requests |
|
|
|
|
|
feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-640-1280") |
|
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-640-1280") |
|
|
|
def my_palette(): |
|
return [ |
|
[131, 162, 255], |
|
[180, 189, 255], |
|
[255, 227, 187], |
|
[255, 210, 143], |
|
[248, 117, 170], |
|
[255, 223, 223], |
|
[255, 246, 246], |
|
[174, 222, 252], |
|
[150, 194, 145], |
|
[255, 219, 170], |
|
[244, 238, 238], |
|
[50, 38, 83], |
|
[128, 98, 214], |
|
[146, 136, 248], |
|
[255, 210, 215], |
|
[255, 152, 152], |
|
[162, 103, 138], |
|
[63, 29, 56], |
|
[0,0,0] |
|
] |
|
|
|
labels_list = [] |
|
|
|
with open(r"labels.txt", "r") as fp: |
|
for line in fp: |
|
labels_list.append(line[:-1]) |
|
|
|
colormap = np.asarray(my_palette()) |
|
|
|
def greet(input_img): |
|
inputs = feature_extractor(images=input_img, return_tensors="pt") |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
|
|
logits_tf = tf.transpose(logits.detach(), [0, 2, 3, 1]) |
|
|
|
logits_tf = tf.image.resize( |
|
logits_tf, [640, 1280] |
|
) |
|
seg = tf.math.argmax(logits_tf, axis=-1)[0] |
|
|
|
color_seg = label_to_color_image(seg.numpy()) |
|
|
|
|
|
color_seg_resized = tf.image.resize(color_seg, (input_img.shape[0], input_img.shape[1])) |
|
|
|
pred_img = np.array(input_img) * 0.5 + color_seg_resized * 0.5 |
|
|
|
|
|
pred_img = np.array(pred_img).astype(np.uint8) |
|
|
|
fig = draw_plot(pred_img, seg.numpy()) |
|
return fig |
|
|
|
def draw_plot(pred_img, seg): |
|
fig = plt.figure(figsize=(20, 15)) |
|
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1]) |
|
|
|
plt.subplot(grid_spec[0]) |
|
plt.imshow(pred_img) |
|
plt.axis("off") |
|
|
|
LABEL_NAMES = np.asarray(labels_list) |
|
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) |
|
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) |
|
|
|
|
|
unique_labels = np.unique(seg.astype("uint8")) |
|
unique_labels = unique_labels[unique_labels < len(FULL_COLOR_MAP)] |
|
|
|
ax = plt.subplot(grid_spec[1]) |
|
|
|
if len(unique_labels) > 0: |
|
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest") |
|
ax.yaxis.tick_right() |
|
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) |
|
else: |
|
|
|
plt.imshow(np.zeros((1, 1, 3), dtype=np.uint8)) |
|
ax.yaxis.tick_right() |
|
plt.yticks([], []) |
|
|
|
plt.xticks([], []) |
|
ax.tick_params(width=0.0, labelsize=25) |
|
return fig |
|
def label_to_color_image(label): |
|
if label.ndim != 2: |
|
raise ValueError("Expect 2-D input label") |
|
|
|
|
|
label = np.clip(label, 0, len(colormap) - 1) |
|
return colormap[label] |
|
|
|
iface = gr.Interface( |
|
fn=greet, |
|
inputs="image", |
|
outputs=["plot"], |
|
examples=["image (1).jpg", "image (2).jpg", "image (3).jpg", "image (4).jpg", "image (5).jpg"], |
|
allow_flagging="never" |
|
) |
|
iface.launch(share=True) |