Spaces:
Running
Running
Update to use diffusers
Browse files- README.md +1 -1
- gradio_canny2image.py +41 -33
- gradio_depth2image.py +28 -22
- gradio_fake_scribble2image.py +28 -22
- gradio_hed2image.py +28 -22
- gradio_hough2image.py +32 -25
- gradio_normal2image.py +29 -23
- gradio_pose2image.py +28 -22
- gradio_scribble2image.py +27 -22
- gradio_scribble2image_interactive.py +27 -22
- gradio_seg2image.py +28 -22
- model.py +559 -708
- requirements.txt +3 -1
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: π
|
|
4 |
colorFrom: pink
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
python_version: 3.10.9
|
9 |
app_file: app.py
|
10 |
pinned: false
|
|
|
4 |
colorFrom: pink
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.20.0
|
8 |
python_version: 3.10.9
|
9 |
app_file: app.py
|
10 |
pinned: false
|
gradio_canny2image.py
CHANGED
@@ -23,33 +23,33 @@ def create_demo(process, max_images=12):
|
|
23 |
maximum=768,
|
24 |
value=512,
|
25 |
step=256)
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
46 |
seed = gr.Slider(label='Seed',
|
47 |
minimum=-1,
|
48 |
maximum=2147483647,
|
49 |
step=1,
|
50 |
-
randomize=True
|
51 |
-
queue=False)
|
52 |
-
eta = gr.Number(label='eta (DDIM)', value=0.0)
|
53 |
a_prompt = gr.Textbox(
|
54 |
label='Added Prompt',
|
55 |
value='best quality, extremely detailed')
|
@@ -59,17 +59,25 @@ def create_demo(process, max_images=12):
|
|
59 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
60 |
)
|
61 |
with gr.Column():
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
input_image,
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
]
|
71 |
run_button.click(fn=process,
|
72 |
-
inputs=
|
73 |
-
outputs=
|
74 |
api_name='canny')
|
75 |
return demo
|
|
|
23 |
maximum=768,
|
24 |
value=512,
|
25 |
step=256)
|
26 |
+
canny_low_threshold = gr.Slider(
|
27 |
+
label='Canny low threshold',
|
28 |
+
minimum=1,
|
29 |
+
maximum=255,
|
30 |
+
value=100,
|
31 |
+
step=1)
|
32 |
+
canny_high_threshold = gr.Slider(
|
33 |
+
label='Canny high threshold',
|
34 |
+
minimum=1,
|
35 |
+
maximum=255,
|
36 |
+
value=200,
|
37 |
+
step=1)
|
38 |
+
num_steps = gr.Slider(label='Steps',
|
39 |
+
minimum=1,
|
40 |
+
maximum=100,
|
41 |
+
value=20,
|
42 |
+
step=1)
|
43 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
44 |
+
minimum=0.1,
|
45 |
+
maximum=30.0,
|
46 |
+
value=9.0,
|
47 |
+
step=0.1)
|
48 |
seed = gr.Slider(label='Seed',
|
49 |
minimum=-1,
|
50 |
maximum=2147483647,
|
51 |
step=1,
|
52 |
+
randomize=True)
|
|
|
|
|
53 |
a_prompt = gr.Textbox(
|
54 |
label='Added Prompt',
|
55 |
value='best quality, extremely detailed')
|
|
|
59 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
60 |
)
|
61 |
with gr.Column():
|
62 |
+
result = gr.Gallery(label='Output',
|
63 |
+
show_label=False,
|
64 |
+
elem_id='gallery').style(grid=2,
|
65 |
+
height='auto')
|
66 |
+
inputs = [
|
67 |
+
input_image,
|
68 |
+
prompt,
|
69 |
+
a_prompt,
|
70 |
+
n_prompt,
|
71 |
+
num_samples,
|
72 |
+
image_resolution,
|
73 |
+
num_steps,
|
74 |
+
guidance_scale,
|
75 |
+
seed,
|
76 |
+
canny_low_threshold,
|
77 |
+
canny_high_threshold,
|
78 |
]
|
79 |
run_button.click(fn=process,
|
80 |
+
inputs=inputs,
|
81 |
+
outputs=result,
|
82 |
api_name='canny')
|
83 |
return demo
|
gradio_depth2image.py
CHANGED
@@ -28,23 +28,21 @@ def create_demo(process, max_images=12):
|
|
28 |
maximum=1024,
|
29 |
value=384,
|
30 |
step=1)
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
seed = gr.Slider(label='Seed',
|
42 |
minimum=-1,
|
43 |
maximum=2147483647,
|
44 |
step=1,
|
45 |
-
randomize=True
|
46 |
-
queue=False)
|
47 |
-
eta = gr.Number(label='eta (DDIM)', value=0.0)
|
48 |
a_prompt = gr.Textbox(
|
49 |
label='Added Prompt',
|
50 |
value='best quality, extremely detailed')
|
@@ -54,16 +52,24 @@ def create_demo(process, max_images=12):
|
|
54 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
55 |
)
|
56 |
with gr.Column():
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
input_image,
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
]
|
65 |
run_button.click(fn=process,
|
66 |
-
inputs=
|
67 |
-
outputs=
|
68 |
api_name='depth')
|
69 |
return demo
|
|
|
28 |
maximum=1024,
|
29 |
value=384,
|
30 |
step=1)
|
31 |
+
num_steps = gr.Slider(label='Steps',
|
32 |
+
minimum=1,
|
33 |
+
maximum=100,
|
34 |
+
value=20,
|
35 |
+
step=1)
|
36 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
37 |
+
minimum=0.1,
|
38 |
+
maximum=30.0,
|
39 |
+
value=9.0,
|
40 |
+
step=0.1)
|
41 |
seed = gr.Slider(label='Seed',
|
42 |
minimum=-1,
|
43 |
maximum=2147483647,
|
44 |
step=1,
|
45 |
+
randomize=True)
|
|
|
|
|
46 |
a_prompt = gr.Textbox(
|
47 |
label='Added Prompt',
|
48 |
value='best quality, extremely detailed')
|
|
|
52 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
53 |
)
|
54 |
with gr.Column():
|
55 |
+
result = gr.Gallery(label='Output',
|
56 |
+
show_label=False,
|
57 |
+
elem_id='gallery').style(grid=2,
|
58 |
+
height='auto')
|
59 |
+
inputs = [
|
60 |
+
input_image,
|
61 |
+
prompt,
|
62 |
+
a_prompt,
|
63 |
+
n_prompt,
|
64 |
+
num_samples,
|
65 |
+
image_resolution,
|
66 |
+
detect_resolution,
|
67 |
+
num_steps,
|
68 |
+
guidance_scale,
|
69 |
+
seed,
|
70 |
]
|
71 |
run_button.click(fn=process,
|
72 |
+
inputs=inputs,
|
73 |
+
outputs=result,
|
74 |
api_name='depth')
|
75 |
return demo
|
gradio_fake_scribble2image.py
CHANGED
@@ -28,23 +28,21 @@ def create_demo(process, max_images=12):
|
|
28 |
maximum=1024,
|
29 |
value=512,
|
30 |
step=1)
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
seed = gr.Slider(label='Seed',
|
42 |
minimum=-1,
|
43 |
maximum=2147483647,
|
44 |
step=1,
|
45 |
-
randomize=True
|
46 |
-
queue=False)
|
47 |
-
eta = gr.Number(label='eta (DDIM)', value=0.0)
|
48 |
a_prompt = gr.Textbox(
|
49 |
label='Added Prompt',
|
50 |
value='best quality, extremely detailed')
|
@@ -54,16 +52,24 @@ def create_demo(process, max_images=12):
|
|
54 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
55 |
)
|
56 |
with gr.Column():
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
input_image,
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
]
|
65 |
run_button.click(fn=process,
|
66 |
-
inputs=
|
67 |
-
outputs=
|
68 |
api_name='fake_scribble')
|
69 |
return demo
|
|
|
28 |
maximum=1024,
|
29 |
value=512,
|
30 |
step=1)
|
31 |
+
num_steps = gr.Slider(label='Steps',
|
32 |
+
minimum=1,
|
33 |
+
maximum=100,
|
34 |
+
value=20,
|
35 |
+
step=1)
|
36 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
37 |
+
minimum=0.1,
|
38 |
+
maximum=30.0,
|
39 |
+
value=9.0,
|
40 |
+
step=0.1)
|
41 |
seed = gr.Slider(label='Seed',
|
42 |
minimum=-1,
|
43 |
maximum=2147483647,
|
44 |
step=1,
|
45 |
+
randomize=True)
|
|
|
|
|
46 |
a_prompt = gr.Textbox(
|
47 |
label='Added Prompt',
|
48 |
value='best quality, extremely detailed')
|
|
|
52 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
53 |
)
|
54 |
with gr.Column():
|
55 |
+
result = gr.Gallery(label='Output',
|
56 |
+
show_label=False,
|
57 |
+
elem_id='gallery').style(grid=2,
|
58 |
+
height='auto')
|
59 |
+
inputs = [
|
60 |
+
input_image,
|
61 |
+
prompt,
|
62 |
+
a_prompt,
|
63 |
+
n_prompt,
|
64 |
+
num_samples,
|
65 |
+
image_resolution,
|
66 |
+
detect_resolution,
|
67 |
+
num_steps,
|
68 |
+
guidance_scale,
|
69 |
+
seed,
|
70 |
]
|
71 |
run_button.click(fn=process,
|
72 |
+
inputs=inputs,
|
73 |
+
outputs=result,
|
74 |
api_name='fake_scribble')
|
75 |
return demo
|
gradio_hed2image.py
CHANGED
@@ -28,23 +28,21 @@ def create_demo(process, max_images=12):
|
|
28 |
maximum=1024,
|
29 |
value=512,
|
30 |
step=1)
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
seed = gr.Slider(label='Seed',
|
42 |
minimum=-1,
|
43 |
maximum=2147483647,
|
44 |
step=1,
|
45 |
-
randomize=True
|
46 |
-
queue=False)
|
47 |
-
eta = gr.Number(label='eta (DDIM)', value=0.0)
|
48 |
a_prompt = gr.Textbox(
|
49 |
label='Added Prompt',
|
50 |
value='best quality, extremely detailed')
|
@@ -54,16 +52,24 @@ def create_demo(process, max_images=12):
|
|
54 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
55 |
)
|
56 |
with gr.Column():
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
input_image,
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
]
|
65 |
run_button.click(fn=process,
|
66 |
-
inputs=
|
67 |
-
outputs=
|
68 |
api_name='hed')
|
69 |
return demo
|
|
|
28 |
maximum=1024,
|
29 |
value=512,
|
30 |
step=1)
|
31 |
+
num_steps = gr.Slider(label='Steps',
|
32 |
+
minimum=1,
|
33 |
+
maximum=100,
|
34 |
+
value=20,
|
35 |
+
step=1)
|
36 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
37 |
+
minimum=0.1,
|
38 |
+
maximum=30.0,
|
39 |
+
value=9.0,
|
40 |
+
step=0.1)
|
41 |
seed = gr.Slider(label='Seed',
|
42 |
minimum=-1,
|
43 |
maximum=2147483647,
|
44 |
step=1,
|
45 |
+
randomize=True)
|
|
|
|
|
46 |
a_prompt = gr.Textbox(
|
47 |
label='Added Prompt',
|
48 |
value='best quality, extremely detailed')
|
|
|
52 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
53 |
)
|
54 |
with gr.Column():
|
55 |
+
result = gr.Gallery(label='Output',
|
56 |
+
show_label=False,
|
57 |
+
elem_id='gallery').style(grid=2,
|
58 |
+
height='auto')
|
59 |
+
inputs = [
|
60 |
+
input_image,
|
61 |
+
prompt,
|
62 |
+
a_prompt,
|
63 |
+
n_prompt,
|
64 |
+
num_samples,
|
65 |
+
image_resolution,
|
66 |
+
detect_resolution,
|
67 |
+
num_steps,
|
68 |
+
guidance_scale,
|
69 |
+
seed,
|
70 |
]
|
71 |
run_button.click(fn=process,
|
72 |
+
inputs=inputs,
|
73 |
+
outputs=result,
|
74 |
api_name='hed')
|
75 |
return demo
|
gradio_hough2image.py
CHANGED
@@ -28,35 +28,33 @@ def create_demo(process, max_images=12):
|
|
28 |
maximum=1024,
|
29 |
value=512,
|
30 |
step=1)
|
31 |
-
|
32 |
label='Hough value threshold (MLSD)',
|
33 |
minimum=0.01,
|
34 |
maximum=2.0,
|
35 |
value=0.1,
|
36 |
step=0.01)
|
37 |
-
|
38 |
label='Hough distance threshold (MLSD)',
|
39 |
minimum=0.01,
|
40 |
maximum=20.0,
|
41 |
value=0.1,
|
42 |
step=0.01)
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
seed = gr.Slider(label='Seed',
|
54 |
minimum=-1,
|
55 |
maximum=2147483647,
|
56 |
step=1,
|
57 |
-
randomize=True
|
58 |
-
queue=False)
|
59 |
-
eta = gr.Number(label='eta (DDIM)', value=0.0)
|
60 |
a_prompt = gr.Textbox(
|
61 |
label='Added Prompt',
|
62 |
value='best quality, extremely detailed')
|
@@ -66,17 +64,26 @@ def create_demo(process, max_images=12):
|
|
66 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
67 |
)
|
68 |
with gr.Column():
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
input_image,
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
]
|
78 |
run_button.click(fn=process,
|
79 |
-
inputs=
|
80 |
-
outputs=
|
81 |
api_name='hough')
|
82 |
return demo
|
|
|
28 |
maximum=1024,
|
29 |
value=512,
|
30 |
step=1)
|
31 |
+
mlsd_value_threshold = gr.Slider(
|
32 |
label='Hough value threshold (MLSD)',
|
33 |
minimum=0.01,
|
34 |
maximum=2.0,
|
35 |
value=0.1,
|
36 |
step=0.01)
|
37 |
+
mlsd_distance_threshold = gr.Slider(
|
38 |
label='Hough distance threshold (MLSD)',
|
39 |
minimum=0.01,
|
40 |
maximum=20.0,
|
41 |
value=0.1,
|
42 |
step=0.01)
|
43 |
+
num_steps = gr.Slider(label='Steps',
|
44 |
+
minimum=1,
|
45 |
+
maximum=100,
|
46 |
+
value=20,
|
47 |
+
step=1)
|
48 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
49 |
+
minimum=0.1,
|
50 |
+
maximum=30.0,
|
51 |
+
value=9.0,
|
52 |
+
step=0.1)
|
53 |
seed = gr.Slider(label='Seed',
|
54 |
minimum=-1,
|
55 |
maximum=2147483647,
|
56 |
step=1,
|
57 |
+
randomize=True)
|
|
|
|
|
58 |
a_prompt = gr.Textbox(
|
59 |
label='Added Prompt',
|
60 |
value='best quality, extremely detailed')
|
|
|
64 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
65 |
)
|
66 |
with gr.Column():
|
67 |
+
result = gr.Gallery(label='Output',
|
68 |
+
show_label=False,
|
69 |
+
elem_id='gallery').style(grid=2,
|
70 |
+
height='auto')
|
71 |
+
inputs = [
|
72 |
+
input_image,
|
73 |
+
prompt,
|
74 |
+
a_prompt,
|
75 |
+
n_prompt,
|
76 |
+
num_samples,
|
77 |
+
image_resolution,
|
78 |
+
detect_resolution,
|
79 |
+
num_steps,
|
80 |
+
guidance_scale,
|
81 |
+
seed,
|
82 |
+
mlsd_value_threshold,
|
83 |
+
mlsd_distance_threshold,
|
84 |
]
|
85 |
run_button.click(fn=process,
|
86 |
+
inputs=inputs,
|
87 |
+
outputs=result,
|
88 |
api_name='hough')
|
89 |
return demo
|
gradio_normal2image.py
CHANGED
@@ -34,23 +34,21 @@ def create_demo(process, max_images=12):
|
|
34 |
maximum=1.0,
|
35 |
value=0.4,
|
36 |
step=0.01)
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
seed = gr.Slider(label='Seed',
|
48 |
minimum=-1,
|
49 |
maximum=2147483647,
|
50 |
step=1,
|
51 |
-
randomize=True
|
52 |
-
queue=False)
|
53 |
-
eta = gr.Number(label='eta (DDIM)', value=0.0)
|
54 |
a_prompt = gr.Textbox(
|
55 |
label='Added Prompt',
|
56 |
value='best quality, extremely detailed')
|
@@ -60,17 +58,25 @@ def create_demo(process, max_images=12):
|
|
60 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
61 |
)
|
62 |
with gr.Column():
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
input_image,
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
]
|
72 |
run_button.click(fn=process,
|
73 |
-
inputs=
|
74 |
-
outputs=
|
75 |
api_name='normal')
|
76 |
return demo
|
|
|
34 |
maximum=1.0,
|
35 |
value=0.4,
|
36 |
step=0.01)
|
37 |
+
num_steps = gr.Slider(label='Steps',
|
38 |
+
minimum=1,
|
39 |
+
maximum=100,
|
40 |
+
value=20,
|
41 |
+
step=1)
|
42 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
43 |
+
minimum=0.1,
|
44 |
+
maximum=30.0,
|
45 |
+
value=9.0,
|
46 |
+
step=0.1)
|
47 |
seed = gr.Slider(label='Seed',
|
48 |
minimum=-1,
|
49 |
maximum=2147483647,
|
50 |
step=1,
|
51 |
+
randomize=True)
|
|
|
|
|
52 |
a_prompt = gr.Textbox(
|
53 |
label='Added Prompt',
|
54 |
value='best quality, extremely detailed')
|
|
|
58 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
59 |
)
|
60 |
with gr.Column():
|
61 |
+
result = gr.Gallery(label='Output',
|
62 |
+
show_label=False,
|
63 |
+
elem_id='gallery').style(grid=2,
|
64 |
+
height='auto')
|
65 |
+
inputs = [
|
66 |
+
input_image,
|
67 |
+
prompt,
|
68 |
+
a_prompt,
|
69 |
+
n_prompt,
|
70 |
+
num_samples,
|
71 |
+
image_resolution,
|
72 |
+
detect_resolution,
|
73 |
+
num_steps,
|
74 |
+
guidance_scale,
|
75 |
+
seed,
|
76 |
+
bg_threshold,
|
77 |
]
|
78 |
run_button.click(fn=process,
|
79 |
+
inputs=inputs,
|
80 |
+
outputs=result,
|
81 |
api_name='normal')
|
82 |
return demo
|
gradio_pose2image.py
CHANGED
@@ -28,23 +28,21 @@ def create_demo(process, max_images=12):
|
|
28 |
maximum=1024,
|
29 |
value=512,
|
30 |
step=1)
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
seed = gr.Slider(label='Seed',
|
42 |
minimum=-1,
|
43 |
maximum=2147483647,
|
44 |
step=1,
|
45 |
-
randomize=True
|
46 |
-
queue=False)
|
47 |
-
eta = gr.Number(label='eta (DDIM)', value=0.0)
|
48 |
a_prompt = gr.Textbox(
|
49 |
label='Added Prompt',
|
50 |
value='best quality, extremely detailed')
|
@@ -54,16 +52,24 @@ def create_demo(process, max_images=12):
|
|
54 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
55 |
)
|
56 |
with gr.Column():
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
input_image,
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
]
|
65 |
run_button.click(fn=process,
|
66 |
-
inputs=
|
67 |
-
outputs=
|
68 |
api_name='pose')
|
69 |
return demo
|
|
|
28 |
maximum=1024,
|
29 |
value=512,
|
30 |
step=1)
|
31 |
+
num_steps = gr.Slider(label='Steps',
|
32 |
+
minimum=1,
|
33 |
+
maximum=100,
|
34 |
+
value=20,
|
35 |
+
step=1)
|
36 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
37 |
+
minimum=0.1,
|
38 |
+
maximum=30.0,
|
39 |
+
value=9.0,
|
40 |
+
step=0.1)
|
41 |
seed = gr.Slider(label='Seed',
|
42 |
minimum=-1,
|
43 |
maximum=2147483647,
|
44 |
step=1,
|
45 |
+
randomize=True)
|
|
|
|
|
46 |
a_prompt = gr.Textbox(
|
47 |
label='Added Prompt',
|
48 |
value='best quality, extremely detailed')
|
|
|
52 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
53 |
)
|
54 |
with gr.Column():
|
55 |
+
result = gr.Gallery(label='Output',
|
56 |
+
show_label=False,
|
57 |
+
elem_id='gallery').style(grid=2,
|
58 |
+
height='auto')
|
59 |
+
inputs = [
|
60 |
+
input_image,
|
61 |
+
prompt,
|
62 |
+
a_prompt,
|
63 |
+
n_prompt,
|
64 |
+
num_samples,
|
65 |
+
image_resolution,
|
66 |
+
detect_resolution,
|
67 |
+
num_steps,
|
68 |
+
guidance_scale,
|
69 |
+
seed,
|
70 |
]
|
71 |
run_button.click(fn=process,
|
72 |
+
inputs=inputs,
|
73 |
+
outputs=result,
|
74 |
api_name='pose')
|
75 |
return demo
|
gradio_scribble2image.py
CHANGED
@@ -23,23 +23,21 @@ def create_demo(process, max_images=12):
|
|
23 |
maximum=768,
|
24 |
value=512,
|
25 |
step=256)
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
seed = gr.Slider(label='Seed',
|
37 |
minimum=-1,
|
38 |
maximum=2147483647,
|
39 |
step=1,
|
40 |
-
randomize=True
|
41 |
-
queue=False)
|
42 |
-
eta = gr.Number(label='eta (DDIM)', value=0.0)
|
43 |
a_prompt = gr.Textbox(
|
44 |
label='Added Prompt',
|
45 |
value='best quality, extremely detailed')
|
@@ -49,16 +47,23 @@ def create_demo(process, max_images=12):
|
|
49 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
50 |
)
|
51 |
with gr.Column():
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
input_image,
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
]
|
60 |
run_button.click(fn=process,
|
61 |
-
inputs=
|
62 |
-
outputs=
|
63 |
api_name='scribble')
|
64 |
return demo
|
|
|
23 |
maximum=768,
|
24 |
value=512,
|
25 |
step=256)
|
26 |
+
num_steps = gr.Slider(label='Steps',
|
27 |
+
minimum=1,
|
28 |
+
maximum=100,
|
29 |
+
value=20,
|
30 |
+
step=1)
|
31 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
32 |
+
minimum=0.1,
|
33 |
+
maximum=30.0,
|
34 |
+
value=9.0,
|
35 |
+
step=0.1)
|
36 |
seed = gr.Slider(label='Seed',
|
37 |
minimum=-1,
|
38 |
maximum=2147483647,
|
39 |
step=1,
|
40 |
+
randomize=True)
|
|
|
|
|
41 |
a_prompt = gr.Textbox(
|
42 |
label='Added Prompt',
|
43 |
value='best quality, extremely detailed')
|
|
|
47 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
48 |
)
|
49 |
with gr.Column():
|
50 |
+
result = gr.Gallery(label='Output',
|
51 |
+
show_label=False,
|
52 |
+
elem_id='gallery').style(grid=2,
|
53 |
+
height='auto')
|
54 |
+
inputs = [
|
55 |
+
input_image,
|
56 |
+
prompt,
|
57 |
+
a_prompt,
|
58 |
+
n_prompt,
|
59 |
+
num_samples,
|
60 |
+
image_resolution,
|
61 |
+
num_steps,
|
62 |
+
guidance_scale,
|
63 |
+
seed,
|
64 |
]
|
65 |
run_button.click(fn=process,
|
66 |
+
inputs=inputs,
|
67 |
+
outputs=result,
|
68 |
api_name='scribble')
|
69 |
return demo
|
gradio_scribble2image_interactive.py
CHANGED
@@ -37,7 +37,7 @@ def create_demo(process, max_images=12):
|
|
37 |
)
|
38 |
create_button.click(fn=create_canvas,
|
39 |
inputs=[canvas_width, canvas_height],
|
40 |
-
outputs=
|
41 |
queue=False)
|
42 |
prompt = gr.Textbox(label='Prompt')
|
43 |
run_button = gr.Button(label='Run')
|
@@ -52,23 +52,21 @@ def create_demo(process, max_images=12):
|
|
52 |
maximum=768,
|
53 |
value=512,
|
54 |
step=256)
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
seed = gr.Slider(label='Seed',
|
66 |
minimum=-1,
|
67 |
maximum=2147483647,
|
68 |
step=1,
|
69 |
-
randomize=True
|
70 |
-
queue=False)
|
71 |
-
eta = gr.Number(label='eta (DDIM)', value=0.0)
|
72 |
a_prompt = gr.Textbox(
|
73 |
label='Added Prompt',
|
74 |
value='best quality, extremely detailed')
|
@@ -78,13 +76,20 @@ def create_demo(process, max_images=12):
|
|
78 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
79 |
)
|
80 |
with gr.Column():
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
input_image,
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
]
|
89 |
-
run_button.click(fn=process, inputs=
|
90 |
return demo
|
|
|
37 |
)
|
38 |
create_button.click(fn=create_canvas,
|
39 |
inputs=[canvas_width, canvas_height],
|
40 |
+
outputs=input_image,
|
41 |
queue=False)
|
42 |
prompt = gr.Textbox(label='Prompt')
|
43 |
run_button = gr.Button(label='Run')
|
|
|
52 |
maximum=768,
|
53 |
value=512,
|
54 |
step=256)
|
55 |
+
num_steps = gr.Slider(label='Steps',
|
56 |
+
minimum=1,
|
57 |
+
maximum=100,
|
58 |
+
value=20,
|
59 |
+
step=1)
|
60 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
61 |
+
minimum=0.1,
|
62 |
+
maximum=30.0,
|
63 |
+
value=9.0,
|
64 |
+
step=0.1)
|
65 |
seed = gr.Slider(label='Seed',
|
66 |
minimum=-1,
|
67 |
maximum=2147483647,
|
68 |
step=1,
|
69 |
+
randomize=True)
|
|
|
|
|
70 |
a_prompt = gr.Textbox(
|
71 |
label='Added Prompt',
|
72 |
value='best quality, extremely detailed')
|
|
|
76 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
77 |
)
|
78 |
with gr.Column():
|
79 |
+
result = gr.Gallery(label='Output',
|
80 |
+
show_label=False,
|
81 |
+
elem_id='gallery').style(grid=2,
|
82 |
+
height='auto')
|
83 |
+
inputs = [
|
84 |
+
input_image,
|
85 |
+
prompt,
|
86 |
+
a_prompt,
|
87 |
+
n_prompt,
|
88 |
+
num_samples,
|
89 |
+
image_resolution,
|
90 |
+
num_steps,
|
91 |
+
guidance_scale,
|
92 |
+
seed,
|
93 |
]
|
94 |
+
run_button.click(fn=process, inputs=inputs, outputs=result)
|
95 |
return demo
|
gradio_seg2image.py
CHANGED
@@ -29,23 +29,21 @@ def create_demo(process, max_images=12):
|
|
29 |
maximum=1024,
|
30 |
value=512,
|
31 |
step=1)
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
seed = gr.Slider(label='Seed',
|
43 |
minimum=-1,
|
44 |
maximum=2147483647,
|
45 |
step=1,
|
46 |
-
randomize=True
|
47 |
-
queue=False)
|
48 |
-
eta = gr.Number(label='eta (DDIM)', value=0.0)
|
49 |
a_prompt = gr.Textbox(
|
50 |
label='Added Prompt',
|
51 |
value='best quality, extremely detailed')
|
@@ -55,16 +53,24 @@ def create_demo(process, max_images=12):
|
|
55 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
56 |
)
|
57 |
with gr.Column():
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
input_image,
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
]
|
66 |
run_button.click(fn=process,
|
67 |
-
inputs=
|
68 |
-
outputs=
|
69 |
api_name='seg')
|
70 |
return demo
|
|
|
29 |
maximum=1024,
|
30 |
value=512,
|
31 |
step=1)
|
32 |
+
num_steps = gr.Slider(label='Steps',
|
33 |
+
minimum=1,
|
34 |
+
maximum=100,
|
35 |
+
value=20,
|
36 |
+
step=1)
|
37 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
38 |
+
minimum=0.1,
|
39 |
+
maximum=30.0,
|
40 |
+
value=9.0,
|
41 |
+
step=0.1)
|
42 |
seed = gr.Slider(label='Seed',
|
43 |
minimum=-1,
|
44 |
maximum=2147483647,
|
45 |
step=1,
|
46 |
+
randomize=True)
|
|
|
|
|
47 |
a_prompt = gr.Textbox(
|
48 |
label='Added Prompt',
|
49 |
value='best quality, extremely detailed')
|
|
|
53 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
54 |
)
|
55 |
with gr.Column():
|
56 |
+
result = gr.Gallery(label='Output',
|
57 |
+
show_label=False,
|
58 |
+
elem_id='gallery').style(grid=2,
|
59 |
+
height='auto')
|
60 |
+
inputs = [
|
61 |
+
input_image,
|
62 |
+
prompt,
|
63 |
+
a_prompt,
|
64 |
+
n_prompt,
|
65 |
+
num_samples,
|
66 |
+
image_resolution,
|
67 |
+
detect_resolution,
|
68 |
+
num_steps,
|
69 |
+
guidance_scale,
|
70 |
+
seed,
|
71 |
]
|
72 |
run_button.click(fn=process,
|
73 |
+
inputs=inputs,
|
74 |
+
outputs=result,
|
75 |
api_name='seg')
|
76 |
return demo
|
model.py
CHANGED
@@ -3,20 +3,20 @@
|
|
3 |
from __future__ import annotations
|
4 |
|
5 |
import pathlib
|
6 |
-
import random
|
7 |
-
import shlex
|
8 |
-
import subprocess
|
9 |
import sys
|
10 |
|
11 |
import cv2
|
12 |
-
import einops
|
13 |
import numpy as np
|
|
|
14 |
import torch
|
15 |
-
from
|
|
|
|
|
16 |
|
17 |
-
|
|
|
|
|
18 |
|
19 |
-
import config
|
20 |
from annotator.canny import apply_canny
|
21 |
from annotator.hed import apply_hed, nms
|
22 |
from annotator.midas import apply_midas
|
@@ -24,743 +24,594 @@ from annotator.mlsd import apply_mlsd
|
|
24 |
from annotator.openpose import apply_openpose
|
25 |
from annotator.uniformer import apply_uniformer
|
26 |
from annotator.util import HWC3, resize_image
|
27 |
-
from cldm.model import create_model, load_state_dict
|
28 |
-
from ldm.models.diffusion.ddim import DDIMSampler
|
29 |
from share import *
|
30 |
|
31 |
-
|
32 |
-
'canny': '
|
33 |
-
'hough': '
|
34 |
-
'hed': '
|
35 |
-
'scribble': '
|
36 |
-
'pose': '
|
37 |
-
'seg': '
|
38 |
-
'depth': '
|
39 |
-
'normal': '
|
40 |
}
|
41 |
-
ORIGINAL_WEIGHT_ROOT = 'https://huggingface.co/lllyasviel/ControlNet/resolve/main/models/'
|
42 |
-
|
43 |
-
LIGHTWEIGHT_MODEL_NAMES = {
|
44 |
-
'canny': 'control_canny-fp16.safetensors',
|
45 |
-
'hough': 'control_mlsd-fp16.safetensors',
|
46 |
-
'hed': 'control_hed-fp16.safetensors',
|
47 |
-
'scribble': 'control_scribble-fp16.safetensors',
|
48 |
-
'pose': 'control_openpose-fp16.safetensors',
|
49 |
-
'seg': 'control_seg-fp16.safetensors',
|
50 |
-
'depth': 'control_depth-fp16.safetensors',
|
51 |
-
'normal': 'control_normal-fp16.safetensors',
|
52 |
-
}
|
53 |
-
LIGHTWEIGHT_WEIGHT_ROOT = 'https://huggingface.co/webui/ControlNet-modules-safetensors/resolve/main/'
|
54 |
|
55 |
|
56 |
class Model:
|
57 |
-
def __init__(self
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
self.
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
self.download_models()
|
81 |
-
|
82 |
-
def download_base_model(self, model_url: str) -> pathlib.Path:
|
83 |
-
model_name = model_url.split('/')[-1]
|
84 |
-
out_path = self.model_dir / model_name
|
85 |
-
if not out_path.exists():
|
86 |
-
subprocess.run(shlex.split(f'wget {model_url} -O {out_path}'))
|
87 |
-
return out_path
|
88 |
-
|
89 |
-
def load_base_model(self, model_url: str) -> None:
|
90 |
-
model_path = self.download_base_model(model_url)
|
91 |
-
self.model.load_state_dict(load_state_dict(model_path,
|
92 |
-
location=self.device.type),
|
93 |
-
strict=False)
|
94 |
-
|
95 |
-
def load_weight(self, task_name: str) -> None:
|
96 |
if task_name == self.task_name:
|
97 |
return
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
load_state_dict(weight_path, location=self.device.type))
|
105 |
self.task_name = task_name
|
106 |
|
107 |
-
def
|
108 |
-
if
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
@torch.inference_mode()
|
122 |
-
def process_canny(
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
self.model.low_vram_shift(is_diffusing=False)
|
173 |
-
|
174 |
-
x_samples = self.model.decode_first_stage(samples)
|
175 |
-
x_samples = (
|
176 |
-
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
177 |
-
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
178 |
-
|
179 |
-
results = [x_samples[i] for i in range(num_samples)]
|
180 |
-
return [255 - detected_map] + results
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
num_samples, image_resolution, detect_resolution,
|
185 |
-
ddim_steps, scale, seed, eta, value_threshold,
|
186 |
-
distance_threshold):
|
187 |
-
self.load_weight('hough')
|
188 |
|
189 |
-
|
190 |
-
|
191 |
-
value_threshold, distance_threshold)
|
192 |
-
detected_map = HWC3(detected_map)
|
193 |
-
img = resize_image(input_image, image_resolution)
|
194 |
-
H, W, C = img.shape
|
195 |
-
|
196 |
-
detected_map = cv2.resize(detected_map, (W, H),
|
197 |
-
interpolation=cv2.INTER_NEAREST)
|
198 |
-
|
199 |
-
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
200 |
-
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
201 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
202 |
-
|
203 |
-
if seed == -1:
|
204 |
-
seed = random.randint(0, 65535)
|
205 |
-
seed_everything(seed)
|
206 |
-
|
207 |
-
if config.save_memory:
|
208 |
-
self.model.low_vram_shift(is_diffusing=False)
|
209 |
-
|
210 |
-
cond = {
|
211 |
-
'c_concat': [control],
|
212 |
-
'c_crossattn': [
|
213 |
-
self.model.get_learned_conditioning(
|
214 |
-
[prompt + ', ' + a_prompt] * num_samples)
|
215 |
-
]
|
216 |
-
}
|
217 |
-
un_cond = {
|
218 |
-
'c_concat': [control],
|
219 |
-
'c_crossattn':
|
220 |
-
[self.model.get_learned_conditioning([n_prompt] * num_samples)]
|
221 |
-
}
|
222 |
-
shape = (4, H // 8, W // 8)
|
223 |
-
|
224 |
-
if config.save_memory:
|
225 |
-
self.model.low_vram_shift(is_diffusing=True)
|
226 |
-
|
227 |
-
samples, intermediates = self.ddim_sampler.sample(
|
228 |
-
ddim_steps,
|
229 |
-
num_samples,
|
230 |
-
shape,
|
231 |
-
cond,
|
232 |
-
verbose=False,
|
233 |
-
eta=eta,
|
234 |
-
unconditional_guidance_scale=scale,
|
235 |
-
unconditional_conditioning=un_cond)
|
236 |
-
|
237 |
-
if config.save_memory:
|
238 |
-
self.model.low_vram_shift(is_diffusing=False)
|
239 |
-
|
240 |
-
x_samples = self.model.decode_first_stage(samples)
|
241 |
-
x_samples = (
|
242 |
-
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
243 |
-
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
244 |
-
|
245 |
-
results = [x_samples[i] for i in range(num_samples)]
|
246 |
-
return [
|
247 |
-
255 - cv2.dilate(detected_map,
|
248 |
-
np.ones(shape=(3, 3), dtype=np.uint8),
|
249 |
-
iterations=1)
|
250 |
-
] + results
|
251 |
|
252 |
@torch.inference_mode()
|
253 |
-
def
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
input_image = HWC3(input_image)
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
H, W
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
268 |
-
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
269 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
270 |
-
|
271 |
-
if seed == -1:
|
272 |
-
seed = random.randint(0, 65535)
|
273 |
-
seed_everything(seed)
|
274 |
-
|
275 |
-
if config.save_memory:
|
276 |
-
self.model.low_vram_shift(is_diffusing=False)
|
277 |
-
|
278 |
-
cond = {
|
279 |
-
'c_concat': [control],
|
280 |
-
'c_crossattn': [
|
281 |
-
self.model.get_learned_conditioning(
|
282 |
-
[prompt + ', ' + a_prompt] * num_samples)
|
283 |
-
]
|
284 |
-
}
|
285 |
-
un_cond = {
|
286 |
-
'c_concat': [control],
|
287 |
-
'c_crossattn':
|
288 |
-
[self.model.get_learned_conditioning([n_prompt] * num_samples)]
|
289 |
-
}
|
290 |
-
shape = (4, H // 8, W // 8)
|
291 |
-
|
292 |
-
if config.save_memory:
|
293 |
-
self.model.low_vram_shift(is_diffusing=True)
|
294 |
-
|
295 |
-
samples, intermediates = self.ddim_sampler.sample(
|
296 |
-
ddim_steps,
|
297 |
-
num_samples,
|
298 |
-
shape,
|
299 |
-
cond,
|
300 |
-
verbose=False,
|
301 |
-
eta=eta,
|
302 |
-
unconditional_guidance_scale=scale,
|
303 |
-
unconditional_conditioning=un_cond)
|
304 |
-
|
305 |
-
if config.save_memory:
|
306 |
-
self.model.low_vram_shift(is_diffusing=False)
|
307 |
-
|
308 |
-
x_samples = self.model.decode_first_stage(samples)
|
309 |
-
x_samples = (
|
310 |
-
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
311 |
-
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
312 |
-
|
313 |
-
results = [x_samples[i] for i in range(num_samples)]
|
314 |
-
return [detected_map] + results
|
315 |
|
316 |
@torch.inference_mode()
|
317 |
-
def
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
shape,
|
360 |
-
cond,
|
361 |
-
verbose=False,
|
362 |
-
eta=eta,
|
363 |
-
unconditional_guidance_scale=scale,
|
364 |
-
unconditional_conditioning=un_cond)
|
365 |
-
|
366 |
-
if config.save_memory:
|
367 |
-
self.model.low_vram_shift(is_diffusing=False)
|
368 |
-
|
369 |
-
x_samples = self.model.decode_first_stage(samples)
|
370 |
-
x_samples = (
|
371 |
-
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
372 |
-
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
373 |
-
|
374 |
-
results = [x_samples[i] for i in range(num_samples)]
|
375 |
-
return [255 - detected_map] + results
|
376 |
|
377 |
@torch.inference_mode()
|
378 |
-
def
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
ddim_steps,
|
420 |
-
num_samples,
|
421 |
-
shape,
|
422 |
-
cond,
|
423 |
-
verbose=False,
|
424 |
-
eta=eta,
|
425 |
-
unconditional_guidance_scale=scale,
|
426 |
-
unconditional_conditioning=un_cond)
|
427 |
-
|
428 |
-
if config.save_memory:
|
429 |
-
self.model.low_vram_shift(is_diffusing=False)
|
430 |
-
|
431 |
-
x_samples = self.model.decode_first_stage(samples)
|
432 |
-
x_samples = (
|
433 |
-
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
434 |
-
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
435 |
-
|
436 |
-
results = [x_samples[i] for i in range(num_samples)]
|
437 |
-
return [255 - detected_map] + results
|
438 |
|
439 |
@torch.inference_mode()
|
440 |
-
def
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
445 |
input_image = HWC3(input_image)
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
H, W
|
450 |
-
|
451 |
-
detected_map = cv2.resize(detected_map, (W, H),
|
452 |
-
interpolation=cv2.INTER_LINEAR)
|
453 |
-
detected_map = nms(detected_map, 127, 3.0)
|
454 |
-
detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0)
|
455 |
-
detected_map[detected_map > 4] = 255
|
456 |
-
detected_map[detected_map < 255] = 0
|
457 |
-
|
458 |
-
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
459 |
-
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
460 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
461 |
-
|
462 |
-
if seed == -1:
|
463 |
-
seed = random.randint(0, 65535)
|
464 |
-
seed_everything(seed)
|
465 |
-
|
466 |
-
if config.save_memory:
|
467 |
-
self.model.low_vram_shift(is_diffusing=False)
|
468 |
-
|
469 |
-
cond = {
|
470 |
-
'c_concat': [control],
|
471 |
-
'c_crossattn': [
|
472 |
-
self.model.get_learned_conditioning(
|
473 |
-
[prompt + ', ' + a_prompt] * num_samples)
|
474 |
-
]
|
475 |
-
}
|
476 |
-
un_cond = {
|
477 |
-
'c_concat': [control],
|
478 |
-
'c_crossattn':
|
479 |
-
[self.model.get_learned_conditioning([n_prompt] * num_samples)]
|
480 |
-
}
|
481 |
-
shape = (4, H // 8, W // 8)
|
482 |
-
|
483 |
-
if config.save_memory:
|
484 |
-
self.model.low_vram_shift(is_diffusing=True)
|
485 |
-
|
486 |
-
samples, intermediates = self.ddim_sampler.sample(
|
487 |
-
ddim_steps,
|
488 |
-
num_samples,
|
489 |
-
shape,
|
490 |
-
cond,
|
491 |
-
verbose=False,
|
492 |
-
eta=eta,
|
493 |
-
unconditional_guidance_scale=scale,
|
494 |
-
unconditional_conditioning=un_cond)
|
495 |
-
|
496 |
-
if config.save_memory:
|
497 |
-
self.model.low_vram_shift(is_diffusing=False)
|
498 |
-
|
499 |
-
x_samples = self.model.decode_first_stage(samples)
|
500 |
-
x_samples = (
|
501 |
-
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
502 |
-
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
503 |
-
|
504 |
-
results = [x_samples[i] for i in range(num_samples)]
|
505 |
-
return [255 - detected_map] + results
|
506 |
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
|
|
|
|
|
|
512 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
513 |
input_image = HWC3(input_image)
|
514 |
-
|
515 |
resize_image(input_image, detect_resolution))
|
516 |
-
|
517 |
-
|
518 |
-
H, W
|
519 |
-
|
520 |
-
detected_map = cv2.resize(detected_map, (W, H),
|
521 |
-
interpolation=cv2.INTER_NEAREST)
|
522 |
-
|
523 |
-
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
524 |
-
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
525 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
526 |
-
|
527 |
-
if seed == -1:
|
528 |
-
seed = random.randint(0, 65535)
|
529 |
-
seed_everything(seed)
|
530 |
-
|
531 |
-
if config.save_memory:
|
532 |
-
self.model.low_vram_shift(is_diffusing=False)
|
533 |
-
|
534 |
-
cond = {
|
535 |
-
'c_concat': [control],
|
536 |
-
'c_crossattn': [
|
537 |
-
self.model.get_learned_conditioning(
|
538 |
-
[prompt + ', ' + a_prompt] * num_samples)
|
539 |
-
]
|
540 |
-
}
|
541 |
-
un_cond = {
|
542 |
-
'c_concat': [control],
|
543 |
-
'c_crossattn':
|
544 |
-
[self.model.get_learned_conditioning([n_prompt] * num_samples)]
|
545 |
-
}
|
546 |
-
shape = (4, H // 8, W // 8)
|
547 |
-
|
548 |
-
if config.save_memory:
|
549 |
-
self.model.low_vram_shift(is_diffusing=True)
|
550 |
-
|
551 |
-
samples, intermediates = self.ddim_sampler.sample(
|
552 |
-
ddim_steps,
|
553 |
-
num_samples,
|
554 |
-
shape,
|
555 |
-
cond,
|
556 |
-
verbose=False,
|
557 |
-
eta=eta,
|
558 |
-
unconditional_guidance_scale=scale,
|
559 |
-
unconditional_conditioning=un_cond)
|
560 |
-
|
561 |
-
if config.save_memory:
|
562 |
-
self.model.low_vram_shift(is_diffusing=False)
|
563 |
-
|
564 |
-
x_samples = self.model.decode_first_stage(samples)
|
565 |
-
x_samples = (
|
566 |
-
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
567 |
-
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
568 |
-
|
569 |
-
results = [x_samples[i] for i in range(num_samples)]
|
570 |
-
return [detected_map] + results
|
571 |
|
572 |
-
|
573 |
-
|
574 |
-
image_resolution, detect_resolution, ddim_steps, scale,
|
575 |
-
seed, eta):
|
576 |
-
self.load_weight('seg')
|
577 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
578 |
input_image = HWC3(input_image)
|
579 |
-
|
580 |
resize_image(input_image, detect_resolution))
|
581 |
-
|
582 |
-
H, W
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
588 |
-
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
589 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
590 |
-
|
591 |
-
if seed == -1:
|
592 |
-
seed = random.randint(0, 65535)
|
593 |
-
seed_everything(seed)
|
594 |
-
|
595 |
-
if config.save_memory:
|
596 |
-
self.model.low_vram_shift(is_diffusing=False)
|
597 |
-
|
598 |
-
cond = {
|
599 |
-
'c_concat': [control],
|
600 |
-
'c_crossattn': [
|
601 |
-
self.model.get_learned_conditioning(
|
602 |
-
[prompt + ', ' + a_prompt] * num_samples)
|
603 |
-
]
|
604 |
-
}
|
605 |
-
un_cond = {
|
606 |
-
'c_concat': [control],
|
607 |
-
'c_crossattn':
|
608 |
-
[self.model.get_learned_conditioning([n_prompt] * num_samples)]
|
609 |
-
}
|
610 |
-
shape = (4, H // 8, W // 8)
|
611 |
-
|
612 |
-
if config.save_memory:
|
613 |
-
self.model.low_vram_shift(is_diffusing=True)
|
614 |
-
|
615 |
-
samples, intermediates = self.ddim_sampler.sample(
|
616 |
-
ddim_steps,
|
617 |
-
num_samples,
|
618 |
-
shape,
|
619 |
-
cond,
|
620 |
-
verbose=False,
|
621 |
-
eta=eta,
|
622 |
-
unconditional_guidance_scale=scale,
|
623 |
-
unconditional_conditioning=un_cond)
|
624 |
-
|
625 |
-
if config.save_memory:
|
626 |
-
self.model.low_vram_shift(is_diffusing=False)
|
627 |
-
|
628 |
-
x_samples = self.model.decode_first_stage(samples)
|
629 |
-
x_samples = (
|
630 |
-
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
631 |
-
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
632 |
-
|
633 |
-
results = [x_samples[i] for i in range(num_samples)]
|
634 |
-
return [detected_map] + results
|
635 |
|
636 |
@torch.inference_mode()
|
637 |
-
def
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
642 |
input_image = HWC3(input_image)
|
643 |
-
|
644 |
resize_image(input_image, detect_resolution))
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
detected_map = cv2.resize(detected_map, (W, H),
|
650 |
-
interpolation=cv2.INTER_LINEAR)
|
651 |
-
|
652 |
-
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
653 |
-
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
654 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
655 |
-
|
656 |
-
if seed == -1:
|
657 |
-
seed = random.randint(0, 65535)
|
658 |
-
seed_everything(seed)
|
659 |
-
|
660 |
-
if config.save_memory:
|
661 |
-
self.model.low_vram_shift(is_diffusing=False)
|
662 |
-
|
663 |
-
cond = {
|
664 |
-
'c_concat': [control],
|
665 |
-
'c_crossattn': [
|
666 |
-
self.model.get_learned_conditioning(
|
667 |
-
[prompt + ', ' + a_prompt] * num_samples)
|
668 |
-
]
|
669 |
-
}
|
670 |
-
un_cond = {
|
671 |
-
'c_concat': [control],
|
672 |
-
'c_crossattn':
|
673 |
-
[self.model.get_learned_conditioning([n_prompt] * num_samples)]
|
674 |
-
}
|
675 |
-
shape = (4, H // 8, W // 8)
|
676 |
-
|
677 |
-
if config.save_memory:
|
678 |
-
self.model.low_vram_shift(is_diffusing=True)
|
679 |
-
|
680 |
-
samples, intermediates = self.ddim_sampler.sample(
|
681 |
-
ddim_steps,
|
682 |
-
num_samples,
|
683 |
-
shape,
|
684 |
-
cond,
|
685 |
-
verbose=False,
|
686 |
-
eta=eta,
|
687 |
-
unconditional_guidance_scale=scale,
|
688 |
-
unconditional_conditioning=un_cond)
|
689 |
-
|
690 |
-
if config.save_memory:
|
691 |
-
self.model.low_vram_shift(is_diffusing=False)
|
692 |
-
|
693 |
-
x_samples = self.model.decode_first_stage(samples)
|
694 |
-
x_samples = (
|
695 |
-
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
696 |
-
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
697 |
-
|
698 |
-
results = [x_samples[i] for i in range(num_samples)]
|
699 |
-
return [detected_map] + results
|
700 |
|
701 |
@torch.inference_mode()
|
702 |
-
def
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
707 |
input_image = HWC3(input_image)
|
708 |
-
_,
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
H, W
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
verbose=False,
|
753 |
-
eta=eta,
|
754 |
-
unconditional_guidance_scale=scale,
|
755 |
-
unconditional_conditioning=un_cond)
|
756 |
-
|
757 |
-
if config.save_memory:
|
758 |
-
self.model.low_vram_shift(is_diffusing=False)
|
759 |
-
|
760 |
-
x_samples = self.model.decode_first_stage(samples)
|
761 |
-
x_samples = (
|
762 |
-
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
763 |
-
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
764 |
-
|
765 |
-
results = [x_samples[i] for i in range(num_samples)]
|
766 |
-
return [detected_map] + results
|
|
|
3 |
from __future__ import annotations
|
4 |
|
5 |
import pathlib
|
|
|
|
|
|
|
6 |
import sys
|
7 |
|
8 |
import cv2
|
|
|
9 |
import numpy as np
|
10 |
+
import PIL.Image
|
11 |
import torch
|
12 |
+
from diffusers import (ControlNetModel, DiffusionPipeline,
|
13 |
+
StableDiffusionControlNetPipeline,
|
14 |
+
UniPCMultistepScheduler)
|
15 |
|
16 |
+
repo_dir = pathlib.Path(__file__).parent
|
17 |
+
submodule_dir = repo_dir / 'ControlNet'
|
18 |
+
sys.path.append(submodule_dir.as_posix())
|
19 |
|
|
|
20 |
from annotator.canny import apply_canny
|
21 |
from annotator.hed import apply_hed, nms
|
22 |
from annotator.midas import apply_midas
|
|
|
24 |
from annotator.openpose import apply_openpose
|
25 |
from annotator.uniformer import apply_uniformer
|
26 |
from annotator.util import HWC3, resize_image
|
|
|
|
|
27 |
from share import *
|
28 |
|
29 |
+
CONTROLNET_MODEL_IDS = {
|
30 |
+
'canny': 'lllyasviel/sd-controlnet-canny',
|
31 |
+
'hough': 'lllyasviel/sd-controlnet-mlsd',
|
32 |
+
'hed': 'lllyasviel/sd-controlnet-hed',
|
33 |
+
'scribble': 'lllyasviel/sd-controlnet-scribble',
|
34 |
+
'pose': 'lllyasviel/sd-controlnet-openpose',
|
35 |
+
'seg': 'lllyasviel/sd-controlnet-seg',
|
36 |
+
'depth': 'lllyasviel/sd-controlnet-depth',
|
37 |
+
'normal': 'lllyasviel/sd-controlnet-normal',
|
38 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
|
41 |
class Model:
|
42 |
+
def __init__(self):
|
43 |
+
# FIXME
|
44 |
+
self.base_model_id = 'andite/anything-v4.0'
|
45 |
+
self.task_name = 'pose'
|
46 |
+
self.pipe = self.load_pipe()
|
47 |
+
|
48 |
+
def load_pipe(self) -> DiffusionPipeline:
|
49 |
+
model_id = CONTROLNET_MODEL_IDS[self.task_name]
|
50 |
+
controlnet = ControlNetModel.from_pretrained(model_id,
|
51 |
+
torch_dtype=torch.float16)
|
52 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
53 |
+
self.base_model_id,
|
54 |
+
safety_checker=None,
|
55 |
+
controlnet=controlnet,
|
56 |
+
torch_dtype=torch.float16)
|
57 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(
|
58 |
+
pipe.scheduler.config)
|
59 |
+
pipe.enable_xformers_memory_efficient_attention()
|
60 |
+
pipe.enable_model_cpu_offload()
|
61 |
+
return pipe
|
62 |
+
|
63 |
+
def load_controlnet_weight(self, task_name: str) -> None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
if task_name == self.task_name:
|
65 |
return
|
66 |
+
model_id = CONTROLNET_MODEL_IDS[task_name]
|
67 |
+
controlnet = ControlNetModel.from_pretrained(model_id,
|
68 |
+
torch_dtype=torch.float16)
|
69 |
+
from accelerate import cpu_offload_with_hook
|
70 |
+
cpu_offload_with_hook(controlnet, torch.device('cuda:0'))
|
71 |
+
self.pipe.controlnet = controlnet
|
|
|
72 |
self.task_name = task_name
|
73 |
|
74 |
+
def get_prompt(self, prompt: str, additional_prompt: str) -> str:
|
75 |
+
if not prompt:
|
76 |
+
prompt = additional_prompt
|
77 |
+
else:
|
78 |
+
prompt = f'{prompt}, {additional_prompt}'
|
79 |
+
return prompt
|
80 |
+
|
81 |
+
def run_pipe(
|
82 |
+
self,
|
83 |
+
prompt: str,
|
84 |
+
negative_prompt: str,
|
85 |
+
control_image: PIL.Image.Image,
|
86 |
+
num_images: int,
|
87 |
+
num_steps: int,
|
88 |
+
guidance_scale: float,
|
89 |
+
seed: int,
|
90 |
+
):
|
91 |
+
generator = torch.Generator().manual_seed(seed)
|
92 |
+
return self.pipe(prompt=prompt,
|
93 |
+
negative_prompt=negative_prompt,
|
94 |
+
guidance_scale=guidance_scale,
|
95 |
+
num_images_per_prompt=num_images,
|
96 |
+
num_inference_steps=num_steps,
|
97 |
+
generator=generator,
|
98 |
+
image=control_image)
|
99 |
+
|
100 |
+
def process(
|
101 |
+
self,
|
102 |
+
task_name: str,
|
103 |
+
prompt: str,
|
104 |
+
additional_prompt: str,
|
105 |
+
negative_prompt: str,
|
106 |
+
control_image: PIL.Image.Image,
|
107 |
+
vis_control_image: PIL.Image.Image,
|
108 |
+
num_samples: int,
|
109 |
+
num_steps: int,
|
110 |
+
guidance_scale: float,
|
111 |
+
seed: int,
|
112 |
+
):
|
113 |
+
self.load_controlnet_weight(task_name)
|
114 |
+
results = self.run_pipe(
|
115 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
116 |
+
negative_prompt=negative_prompt,
|
117 |
+
control_image=control_image,
|
118 |
+
num_images=num_samples,
|
119 |
+
num_steps=num_steps,
|
120 |
+
guidance_scale=guidance_scale,
|
121 |
+
seed=seed,
|
122 |
+
)
|
123 |
+
return [vis_control_image] + results.images
|
124 |
+
|
125 |
+
def preprocess_canny(
|
126 |
+
self,
|
127 |
+
input_image: np.ndarray,
|
128 |
+
image_resolution: int,
|
129 |
+
low_threshold: int,
|
130 |
+
high_threshold: int,
|
131 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
132 |
+
image = resize_image(HWC3(input_image), image_resolution)
|
133 |
+
control_image = apply_canny(image, low_threshold, high_threshold)
|
134 |
+
control_image = HWC3(control_image)
|
135 |
+
vis_control_image = 255 - control_image
|
136 |
+
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
137 |
+
vis_control_image)
|
138 |
|
139 |
@torch.inference_mode()
|
140 |
+
def process_canny(
|
141 |
+
self,
|
142 |
+
input_image: np.ndarray,
|
143 |
+
prompt: str,
|
144 |
+
additional_prompt: str,
|
145 |
+
negative_prompt: str,
|
146 |
+
num_samples: int,
|
147 |
+
image_resolution: int,
|
148 |
+
num_steps: int,
|
149 |
+
guidance_scale: float,
|
150 |
+
seed: int,
|
151 |
+
low_threshold: int,
|
152 |
+
high_threshold: int,
|
153 |
+
) -> list[PIL.Image.Image]:
|
154 |
+
control_image, vis_control_image = self.preprocess_canny(
|
155 |
+
input_image=input_image,
|
156 |
+
image_resolution=image_resolution,
|
157 |
+
low_threshold=low_threshold,
|
158 |
+
high_threshold=high_threshold,
|
159 |
+
)
|
160 |
+
return self.process(
|
161 |
+
task_name='canny',
|
162 |
+
prompt=prompt,
|
163 |
+
additional_prompt=additional_prompt,
|
164 |
+
negative_prompt=negative_prompt,
|
165 |
+
control_image=control_image,
|
166 |
+
vis_control_image=vis_control_image,
|
167 |
+
num_samples=num_samples,
|
168 |
+
num_steps=num_steps,
|
169 |
+
guidance_scale=guidance_scale,
|
170 |
+
seed=seed,
|
171 |
+
)
|
172 |
+
|
173 |
+
def preprocess_hough(
|
174 |
+
self,
|
175 |
+
input_image: np.ndarray,
|
176 |
+
image_resolution: int,
|
177 |
+
detect_resolution: int,
|
178 |
+
value_threshold: float,
|
179 |
+
distance_threshold: float,
|
180 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
181 |
+
input_image = HWC3(input_image)
|
182 |
+
control_image = apply_mlsd(
|
183 |
+
resize_image(input_image, detect_resolution), value_threshold,
|
184 |
+
distance_threshold)
|
185 |
+
control_image = HWC3(control_image)
|
186 |
+
image = resize_image(input_image, image_resolution)
|
187 |
+
H, W = image.shape[:2]
|
188 |
+
control_image = cv2.resize(control_image, (W, H),
|
189 |
+
interpolation=cv2.INTER_NEAREST)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
+
vis_control_image = 255 - cv2.dilate(
|
192 |
+
control_image, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
|
|
|
|
|
|
|
|
|
193 |
|
194 |
+
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
195 |
+
vis_control_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
@torch.inference_mode()
|
198 |
+
def process_hough(
|
199 |
+
self,
|
200 |
+
input_image: np.ndarray,
|
201 |
+
prompt: str,
|
202 |
+
additional_prompt: str,
|
203 |
+
negative_prompt: str,
|
204 |
+
num_samples: int,
|
205 |
+
image_resolution: int,
|
206 |
+
detect_resolution: int,
|
207 |
+
num_steps: int,
|
208 |
+
guidance_scale: float,
|
209 |
+
seed: int,
|
210 |
+
value_threshold: float,
|
211 |
+
distance_threshold: float,
|
212 |
+
) -> list[PIL.Image.Image]:
|
213 |
+
control_image, vis_control_image = self.preprocess_hough(
|
214 |
+
input_image=input_image,
|
215 |
+
image_resolution=image_resolution,
|
216 |
+
detect_resolution=detect_resolution,
|
217 |
+
value_threshold=value_threshold,
|
218 |
+
distance_threshold=distance_threshold,
|
219 |
+
)
|
220 |
+
return self.process(
|
221 |
+
task_name='hough',
|
222 |
+
prompt=prompt,
|
223 |
+
additional_prompt=additional_prompt,
|
224 |
+
negative_prompt=negative_prompt,
|
225 |
+
control_image=control_image,
|
226 |
+
vis_control_image=vis_control_image,
|
227 |
+
num_samples=num_samples,
|
228 |
+
num_steps=num_steps,
|
229 |
+
guidance_scale=guidance_scale,
|
230 |
+
seed=seed,
|
231 |
+
)
|
232 |
+
|
233 |
+
def preprocess_hed(
|
234 |
+
self,
|
235 |
+
input_image: np.ndarray,
|
236 |
+
image_resolution: int,
|
237 |
+
detect_resolution: int,
|
238 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
239 |
input_image = HWC3(input_image)
|
240 |
+
control_image = apply_hed(resize_image(input_image, detect_resolution))
|
241 |
+
control_image = HWC3(control_image)
|
242 |
+
image = resize_image(input_image, image_resolution)
|
243 |
+
H, W = image.shape[:2]
|
244 |
+
control_image = cv2.resize(control_image, (W, H),
|
245 |
+
interpolation=cv2.INTER_LINEAR)
|
246 |
+
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
247 |
+
control_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
|
249 |
@torch.inference_mode()
|
250 |
+
def process_hed(
|
251 |
+
self,
|
252 |
+
input_image: np.ndarray,
|
253 |
+
prompt: str,
|
254 |
+
additional_prompt: str,
|
255 |
+
negative_prompt: str,
|
256 |
+
num_samples: int,
|
257 |
+
image_resolution: int,
|
258 |
+
detect_resolution: int,
|
259 |
+
num_steps: int,
|
260 |
+
guidance_scale: float,
|
261 |
+
seed: int,
|
262 |
+
) -> list[PIL.Image.Image]:
|
263 |
+
control_image, vis_control_image = self.preprocess_hed(
|
264 |
+
input_image=input_image,
|
265 |
+
image_resolution=image_resolution,
|
266 |
+
detect_resolution=detect_resolution,
|
267 |
+
)
|
268 |
+
return self.process(
|
269 |
+
task_name='hed',
|
270 |
+
prompt=prompt,
|
271 |
+
additional_prompt=additional_prompt,
|
272 |
+
negative_prompt=negative_prompt,
|
273 |
+
control_image=control_image,
|
274 |
+
vis_control_image=vis_control_image,
|
275 |
+
num_samples=num_samples,
|
276 |
+
num_steps=num_steps,
|
277 |
+
guidance_scale=guidance_scale,
|
278 |
+
seed=seed,
|
279 |
+
)
|
280 |
+
|
281 |
+
def preprocess_scribble(
|
282 |
+
self,
|
283 |
+
input_image: np.ndarray,
|
284 |
+
image_resolution: int,
|
285 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
286 |
+
image = resize_image(HWC3(input_image), image_resolution)
|
287 |
+
control_image = np.zeros_like(image, dtype=np.uint8)
|
288 |
+
control_image[np.min(image, axis=2) < 127] = 255
|
289 |
+
vis_control_image = 255 - control_image
|
290 |
+
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
291 |
+
vis_control_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
|
293 |
@torch.inference_mode()
|
294 |
+
def process_scribble(
|
295 |
+
self,
|
296 |
+
input_image: np.ndarray,
|
297 |
+
prompt: str,
|
298 |
+
additional_prompt: str,
|
299 |
+
negative_prompt: str,
|
300 |
+
num_samples: int,
|
301 |
+
image_resolution: int,
|
302 |
+
num_steps: int,
|
303 |
+
guidance_scale: float,
|
304 |
+
seed: int,
|
305 |
+
) -> list[PIL.Image.Image]:
|
306 |
+
control_image, vis_control_image = self.preprocess_scribble(
|
307 |
+
input_image=input_image,
|
308 |
+
image_resolution=image_resolution,
|
309 |
+
)
|
310 |
+
return self.process(
|
311 |
+
task_name='scribble',
|
312 |
+
prompt=prompt,
|
313 |
+
additional_prompt=additional_prompt,
|
314 |
+
negative_prompt=negative_prompt,
|
315 |
+
control_image=control_image,
|
316 |
+
vis_control_image=vis_control_image,
|
317 |
+
num_samples=num_samples,
|
318 |
+
num_steps=num_steps,
|
319 |
+
guidance_scale=guidance_scale,
|
320 |
+
seed=seed,
|
321 |
+
)
|
322 |
+
|
323 |
+
def preprocess_scribble_interactive(
|
324 |
+
self,
|
325 |
+
input_image: np.ndarray,
|
326 |
+
image_resolution: int,
|
327 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
328 |
+
image = resize_image(HWC3(input_image['mask'][:, :, 0]),
|
329 |
+
image_resolution)
|
330 |
+
control_image = np.zeros_like(image, dtype=np.uint8)
|
331 |
+
control_image[np.min(image, axis=2) > 127] = 255
|
332 |
+
vis_control_image = 255 - control_image
|
333 |
+
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
334 |
+
vis_control_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
|
336 |
@torch.inference_mode()
|
337 |
+
def process_scribble_interactive(
|
338 |
+
self,
|
339 |
+
input_image: np.ndarray,
|
340 |
+
prompt: str,
|
341 |
+
additional_prompt: str,
|
342 |
+
negative_prompt: str,
|
343 |
+
num_samples: int,
|
344 |
+
image_resolution: int,
|
345 |
+
num_steps: int,
|
346 |
+
guidance_scale: float,
|
347 |
+
seed: int,
|
348 |
+
) -> list[PIL.Image.Image]:
|
349 |
+
control_image, vis_control_image = self.preprocess_scribble_interactive(
|
350 |
+
input_image=input_image,
|
351 |
+
image_resolution=image_resolution,
|
352 |
+
)
|
353 |
+
return self.process(
|
354 |
+
task_name='scribble',
|
355 |
+
prompt=prompt,
|
356 |
+
additional_prompt=additional_prompt,
|
357 |
+
negative_prompt=negative_prompt,
|
358 |
+
control_image=control_image,
|
359 |
+
vis_control_image=vis_control_image,
|
360 |
+
num_samples=num_samples,
|
361 |
+
num_steps=num_steps,
|
362 |
+
guidance_scale=guidance_scale,
|
363 |
+
seed=seed,
|
364 |
+
)
|
365 |
+
|
366 |
+
def preprocess_fake_scribble(
|
367 |
+
self,
|
368 |
+
input_image: np.ndarray,
|
369 |
+
image_resolution: int,
|
370 |
+
detect_resolution: int,
|
371 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
372 |
input_image = HWC3(input_image)
|
373 |
+
control_image = apply_hed(resize_image(input_image, detect_resolution))
|
374 |
+
control_image = HWC3(control_image)
|
375 |
+
image = resize_image(input_image, image_resolution)
|
376 |
+
H, W = image.shape[:2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
377 |
|
378 |
+
control_image = cv2.resize(control_image, (W, H),
|
379 |
+
interpolation=cv2.INTER_LINEAR)
|
380 |
+
control_image = nms(control_image, 127, 3.0)
|
381 |
+
control_image = cv2.GaussianBlur(control_image, (0, 0), 3.0)
|
382 |
+
control_image[control_image > 4] = 255
|
383 |
+
control_image[control_image < 255] = 0
|
384 |
+
|
385 |
+
vis_control_image = 255 - control_image
|
386 |
|
387 |
+
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
388 |
+
vis_control_image)
|
389 |
+
|
390 |
+
@torch.inference_mode()
|
391 |
+
def process_fake_scribble(
|
392 |
+
self,
|
393 |
+
input_image: np.ndarray,
|
394 |
+
prompt: str,
|
395 |
+
additional_prompt: str,
|
396 |
+
negative_prompt: str,
|
397 |
+
num_samples: int,
|
398 |
+
image_resolution: int,
|
399 |
+
detect_resolution: int,
|
400 |
+
num_steps: int,
|
401 |
+
guidance_scale: float,
|
402 |
+
seed: int,
|
403 |
+
) -> list[PIL.Image.Image]:
|
404 |
+
control_image, vis_control_image = self.preprocess_fake_scribble(
|
405 |
+
input_image=input_image,
|
406 |
+
image_resolution=image_resolution,
|
407 |
+
detect_resolution=detect_resolution,
|
408 |
+
)
|
409 |
+
return self.process(
|
410 |
+
task_name='scribble',
|
411 |
+
prompt=prompt,
|
412 |
+
additional_prompt=additional_prompt,
|
413 |
+
negative_prompt=negative_prompt,
|
414 |
+
control_image=control_image,
|
415 |
+
vis_control_image=vis_control_image,
|
416 |
+
num_samples=num_samples,
|
417 |
+
num_steps=num_steps,
|
418 |
+
guidance_scale=guidance_scale,
|
419 |
+
seed=seed,
|
420 |
+
)
|
421 |
+
|
422 |
+
def preprocess_pose(
|
423 |
+
self,
|
424 |
+
input_image: np.ndarray,
|
425 |
+
image_resolution: int,
|
426 |
+
detect_resolution: int,
|
427 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
428 |
input_image = HWC3(input_image)
|
429 |
+
control_image, _ = apply_openpose(
|
430 |
resize_image(input_image, detect_resolution))
|
431 |
+
control_image = HWC3(control_image)
|
432 |
+
image = resize_image(input_image, image_resolution)
|
433 |
+
H, W = image.shape[:2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
434 |
|
435 |
+
control_image = cv2.resize(control_image, (W, H),
|
436 |
+
interpolation=cv2.INTER_NEAREST)
|
|
|
|
|
|
|
437 |
|
438 |
+
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
439 |
+
control_image)
|
440 |
+
|
441 |
+
@torch.inference_mode()
|
442 |
+
def process_pose(
|
443 |
+
self,
|
444 |
+
input_image: np.ndarray,
|
445 |
+
prompt: str,
|
446 |
+
additional_prompt: str,
|
447 |
+
negative_prompt: str,
|
448 |
+
num_samples: int,
|
449 |
+
image_resolution: int,
|
450 |
+
detect_resolution: int,
|
451 |
+
num_steps: int,
|
452 |
+
guidance_scale: float,
|
453 |
+
seed: int,
|
454 |
+
) -> list[PIL.Image.Image]:
|
455 |
+
control_image, vis_control_image = self.preprocess_pose(
|
456 |
+
input_image=input_image,
|
457 |
+
image_resolution=image_resolution,
|
458 |
+
detect_resolution=detect_resolution,
|
459 |
+
)
|
460 |
+
return self.process(
|
461 |
+
task_name='pose',
|
462 |
+
prompt=prompt,
|
463 |
+
additional_prompt=additional_prompt,
|
464 |
+
negative_prompt=negative_prompt,
|
465 |
+
control_image=control_image,
|
466 |
+
vis_control_image=vis_control_image,
|
467 |
+
num_samples=num_samples,
|
468 |
+
num_steps=num_steps,
|
469 |
+
guidance_scale=guidance_scale,
|
470 |
+
seed=seed,
|
471 |
+
)
|
472 |
+
|
473 |
+
def preprocess_seg(
|
474 |
+
self,
|
475 |
+
input_image: np.ndarray,
|
476 |
+
image_resolution: int,
|
477 |
+
detect_resolution: int,
|
478 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
479 |
input_image = HWC3(input_image)
|
480 |
+
control_image = apply_uniformer(
|
481 |
resize_image(input_image, detect_resolution))
|
482 |
+
image = resize_image(input_image, image_resolution)
|
483 |
+
H, W = image.shape[:2]
|
484 |
+
control_image = cv2.resize(control_image, (W, H),
|
485 |
+
interpolation=cv2.INTER_NEAREST)
|
486 |
+
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
487 |
+
control_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
488 |
|
489 |
@torch.inference_mode()
|
490 |
+
def process_seg(
|
491 |
+
self,
|
492 |
+
input_image: np.ndarray,
|
493 |
+
prompt: str,
|
494 |
+
additional_prompt: str,
|
495 |
+
negative_prompt: str,
|
496 |
+
num_samples: int,
|
497 |
+
image_resolution: int,
|
498 |
+
detect_resolution: int,
|
499 |
+
num_steps: int,
|
500 |
+
guidance_scale: float,
|
501 |
+
seed: int,
|
502 |
+
) -> list[PIL.Image.Image]:
|
503 |
+
control_image, vis_control_image = self.preprocess_seg(
|
504 |
+
input_image=input_image,
|
505 |
+
image_resolution=image_resolution,
|
506 |
+
detect_resolution=detect_resolution,
|
507 |
+
)
|
508 |
+
return self.process(
|
509 |
+
task_name='seg',
|
510 |
+
prompt=prompt,
|
511 |
+
additional_prompt=additional_prompt,
|
512 |
+
negative_prompt=negative_prompt,
|
513 |
+
control_image=control_image,
|
514 |
+
vis_control_image=vis_control_image,
|
515 |
+
num_samples=num_samples,
|
516 |
+
num_steps=num_steps,
|
517 |
+
guidance_scale=guidance_scale,
|
518 |
+
seed=seed,
|
519 |
+
)
|
520 |
+
|
521 |
+
def preprocess_depth(
|
522 |
+
self,
|
523 |
+
input_image: np.ndarray,
|
524 |
+
image_resolution: int,
|
525 |
+
detect_resolution: int,
|
526 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
527 |
input_image = HWC3(input_image)
|
528 |
+
control_image, _ = apply_midas(
|
529 |
resize_image(input_image, detect_resolution))
|
530 |
+
control_image = HWC3(control_image)
|
531 |
+
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
532 |
+
control_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
533 |
|
534 |
@torch.inference_mode()
|
535 |
+
def process_depth(
|
536 |
+
self,
|
537 |
+
input_image: np.ndarray,
|
538 |
+
prompt: str,
|
539 |
+
additional_prompt: str,
|
540 |
+
negative_prompt: str,
|
541 |
+
num_samples: int,
|
542 |
+
image_resolution: int,
|
543 |
+
detect_resolution: int,
|
544 |
+
num_steps: int,
|
545 |
+
guidance_scale: float,
|
546 |
+
seed: int,
|
547 |
+
) -> list[PIL.Image.Image]:
|
548 |
+
control_image, vis_control_image = self.preprocess_depth(
|
549 |
+
input_image=input_image,
|
550 |
+
image_resolution=image_resolution,
|
551 |
+
detect_resolution=detect_resolution,
|
552 |
+
)
|
553 |
+
return self.process(
|
554 |
+
task_name='depth',
|
555 |
+
prompt=prompt,
|
556 |
+
additional_prompt=additional_prompt,
|
557 |
+
negative_prompt=negative_prompt,
|
558 |
+
control_image=control_image,
|
559 |
+
vis_control_image=vis_control_image,
|
560 |
+
num_samples=num_samples,
|
561 |
+
num_steps=num_steps,
|
562 |
+
guidance_scale=guidance_scale,
|
563 |
+
seed=seed,
|
564 |
+
)
|
565 |
+
|
566 |
+
def preprocess_normal(
|
567 |
+
self,
|
568 |
+
input_image: np.ndarray,
|
569 |
+
image_resolution: int,
|
570 |
+
detect_resolution: int,
|
571 |
+
bg_threshold,
|
572 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
573 |
input_image = HWC3(input_image)
|
574 |
+
_, control_image = apply_midas(resize_image(input_image,
|
575 |
+
detect_resolution),
|
576 |
+
bg_th=bg_threshold)
|
577 |
+
control_image = HWC3(control_image)
|
578 |
+
image = resize_image(input_image, image_resolution)
|
579 |
+
H, W = image.shape[:2]
|
580 |
+
control_image = cv2.resize(control_image, (W, H),
|
581 |
+
interpolation=cv2.INTER_LINEAR)
|
582 |
+
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
583 |
+
control_image)
|
584 |
+
|
585 |
+
@torch.inference_mode()
|
586 |
+
def process_normal(
|
587 |
+
self,
|
588 |
+
input_image: np.ndarray,
|
589 |
+
prompt: str,
|
590 |
+
additional_prompt: str,
|
591 |
+
negative_prompt: str,
|
592 |
+
num_samples: int,
|
593 |
+
image_resolution: int,
|
594 |
+
detect_resolution: int,
|
595 |
+
num_steps: int,
|
596 |
+
guidance_scale: float,
|
597 |
+
seed: int,
|
598 |
+
bg_threshold,
|
599 |
+
) -> list[PIL.Image.Image]:
|
600 |
+
control_image, vis_control_image = self.preprocess_normal(
|
601 |
+
input_image=input_image,
|
602 |
+
image_resolution=image_resolution,
|
603 |
+
detect_resolution=detect_resolution,
|
604 |
+
bg_threshold=bg_threshold,
|
605 |
+
)
|
606 |
+
return self.process(
|
607 |
+
task_name='normal',
|
608 |
+
prompt=prompt,
|
609 |
+
additional_prompt=additional_prompt,
|
610 |
+
negative_prompt=negative_prompt,
|
611 |
+
control_image=control_image,
|
612 |
+
vis_control_image=vis_control_image,
|
613 |
+
num_samples=num_samples,
|
614 |
+
num_steps=num_steps,
|
615 |
+
guidance_scale=guidance_scale,
|
616 |
+
seed=seed,
|
617 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
addict==2.4.0
|
2 |
albumentations==1.3.0
|
3 |
einops==0.6.0
|
4 |
-
|
|
|
|
|
5 |
imageio==2.25.0
|
6 |
imageio-ffmpeg==0.4.8
|
7 |
kornia==0.6.9
|
|
|
1 |
addict==2.4.0
|
2 |
albumentations==1.3.0
|
3 |
einops==0.6.0
|
4 |
+
git+https://github.com/huggingface/accelerate@78151f8
|
5 |
+
git+https://github.com/huggingface/diffusers@fa6d52d
|
6 |
+
gradio==3.20.0
|
7 |
imageio==2.25.0
|
8 |
imageio-ffmpeg==0.4.8
|
9 |
kornia==0.6.9
|