File size: 3,722 Bytes
9c4c9e6
 
 
 
 
b4a6915
 
9c4c9e6
 
 
 
 
 
 
 
 
3744a88
 
 
b4a6915
3744a88
 
9c4c9e6
3744a88
9c4c9e6
 
 
3744a88
a258609
 
 
 
 
 
3744a88
 
 
9c4c9e6
 
 
 
3744a88
9c4c9e6
b4a6915
 
9c4c9e6
b4a6915
 
 
 
9c4c9e6
 
 
 
3744a88
9c4c9e6
3744a88
9c4c9e6
 
3744a88
9c4c9e6
 
 
 
 
 
59bef24
 
 
 
 
 
9c4c9e6
 
 
59bef24
9c4c9e6
 
59bef24
 
3744a88
9c4c9e6
 
 
 
3744a88
b4a6915
 
 
3744a88
 
 
 
59bef24
b4a6915
3744a88
b4a6915
 
 
 
 
 
 
 
 
59bef24
b4a6915
 
3744a88
9c4c9e6
59bef24
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#!/usr/bin/env python

from __future__ import annotations

import os
import random
import shlex
import subprocess
import sys

import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download

if os.environ.get("SYSTEM") == "spaces":
    with open("patch") as f:
        subprocess.run(shlex.split("patch -p1"), cwd="stylegan2-pytorch", stdin=f)
    if not torch.cuda.is_available():
        with open("patch-cpu") as f:
            subprocess.run(shlex.split("patch -p1"), cwd="stylegan2-pytorch", stdin=f)

sys.path.insert(0, "stylegan2-pytorch")

from model import Generator

DESCRIPTION = """# [TADNE](https://thisanimedoesnotexist.ai/) (This Anime Does Not Exist)

Related Apps:
- [TADNE Image Viewer](https://huggingface.co/spaces/hysts/TADNE-image-viewer)
- [TADNE Image Selector](https://huggingface.co/spaces/hysts/TADNE-image-selector)
- [TADNE Interpolation](https://huggingface.co/spaces/hysts/TADNE-interpolation)
- [TADNE Image Search with DeepDanbooru](https://huggingface.co/spaces/hysts/TADNE-image-search-with-DeepDanbooru)
"""
SAMPLE_IMAGE_DIR = "https://huggingface.co/spaces/hysts/TADNE/resolve/main/samples"
ARTICLE = f"""## Generated images
- size: 512x512
- truncation: 0.7
- seed: 0-99
![samples]({SAMPLE_IMAGE_DIR}/sample.jpg)
"""

MAX_SEED = np.iinfo(np.int32).max


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed


def load_model(device: torch.device) -> nn.Module:
    model = Generator(512, 1024, 4, channel_multiplier=2)
    path = hf_hub_download("public-data/TADNE", "models/aydao-anime-danbooru2019s-512-5268480.pt")
    checkpoint = torch.load(path)
    model.load_state_dict(checkpoint["g_ema"])
    model.eval()
    model.to(device)
    model.latent_avg = checkpoint["latent_avg"].to(device)
    with torch.inference_mode():
        z = torch.zeros((1, model.style_dim)).to(device)
        model([z], truncation=0.7, truncation_latent=model.latent_avg)
    return model


device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = load_model(device)


def generate_z(z_dim: int, seed: int) -> torch.Tensor:
    return torch.from_numpy(np.random.RandomState(seed).randn(1, z_dim)).float()


@torch.inference_mode()
def generate_image(seed: int, truncation_psi: float, randomize_noise: bool) -> np.ndarray:
    seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))

    z = generate_z(model.style_dim, seed)
    z = z.to(device)
    out, _ = model([z], truncation=truncation_psi, truncation_latent=model.latent_avg, randomize_noise=randomize_noise)
    out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
    return out[0].cpu().numpy()


with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Row():
        with gr.Column():
            seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            psi = gr.Slider(label="Truncation psi", minimum=0, maximum=2, step=0.05, value=0.7)
            randomize_noise = gr.Checkbox(label="Randomize Noise", value=False)
            run_button = gr.Button()
        with gr.Column():
            result = gr.Image(label="Output")
    gr.Markdown(ARTICLE)

    run_button.click(
        fn=randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=generate_image,
        inputs=[seed, psi, randomize_noise],
        outputs=result,
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=10).launch()