hysts HF staff commited on
Commit
3aac243
1 Parent(s): d321b1e
Files changed (7) hide show
  1. .pre-commit-config.yaml +59 -34
  2. .style.yapf +0 -5
  3. .vscode/settings.json +30 -0
  4. README.md +1 -1
  5. app.py +36 -48
  6. requirements.txt +6 -6
  7. style.css +8 -0
.pre-commit-config.yaml CHANGED
@@ -1,35 +1,60 @@
1
  repos:
2
- - repo: https://github.com/pre-commit/pre-commit-hooks
3
- rev: v4.2.0
4
- hooks:
5
- - id: check-executables-have-shebangs
6
- - id: check-json
7
- - id: check-merge-conflict
8
- - id: check-shebang-scripts-are-executable
9
- - id: check-toml
10
- - id: check-yaml
11
- - id: double-quote-string-fixer
12
- - id: end-of-file-fixer
13
- - id: mixed-line-ending
14
- args: ['--fix=lf']
15
- - id: requirements-txt-fixer
16
- - id: trailing-whitespace
17
- - repo: https://github.com/myint/docformatter
18
- rev: v1.4
19
- hooks:
20
- - id: docformatter
21
- args: ['--in-place']
22
- - repo: https://github.com/pycqa/isort
23
- rev: 5.12.0
24
- hooks:
25
- - id: isort
26
- - repo: https://github.com/pre-commit/mirrors-mypy
27
- rev: v0.991
28
- hooks:
29
- - id: mypy
30
- args: ['--ignore-missing-imports']
31
- - repo: https://github.com/google/yapf
32
- rev: v0.32.0
33
- hooks:
34
- - id: yapf
35
- args: ['--parallel', '--in-place']
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  repos:
2
+ - repo: https://github.com/pre-commit/pre-commit-hooks
3
+ rev: v4.5.0
4
+ hooks:
5
+ - id: check-executables-have-shebangs
6
+ - id: check-json
7
+ - id: check-merge-conflict
8
+ - id: check-shebang-scripts-are-executable
9
+ - id: check-toml
10
+ - id: check-yaml
11
+ - id: end-of-file-fixer
12
+ - id: mixed-line-ending
13
+ args: ["--fix=lf"]
14
+ - id: requirements-txt-fixer
15
+ - id: trailing-whitespace
16
+ - repo: https://github.com/myint/docformatter
17
+ rev: v1.7.5
18
+ hooks:
19
+ - id: docformatter
20
+ args: ["--in-place"]
21
+ - repo: https://github.com/pycqa/isort
22
+ rev: 5.13.2
23
+ hooks:
24
+ - id: isort
25
+ args: ["--profile", "black"]
26
+ - repo: https://github.com/pre-commit/mirrors-mypy
27
+ rev: v1.8.0
28
+ hooks:
29
+ - id: mypy
30
+ args: ["--ignore-missing-imports"]
31
+ additional_dependencies:
32
+ [
33
+ "types-python-slugify",
34
+ "types-requests",
35
+ "types-PyYAML",
36
+ "types-pytz",
37
+ ]
38
+ - repo: https://github.com/psf/black
39
+ rev: 24.2.0
40
+ hooks:
41
+ - id: black
42
+ language_version: python3.10
43
+ args: ["--line-length", "119"]
44
+ - repo: https://github.com/kynan/nbstripout
45
+ rev: 0.7.1
46
+ hooks:
47
+ - id: nbstripout
48
+ args:
49
+ [
50
+ "--extra-keys",
51
+ "metadata.interpreter metadata.kernelspec cell.metadata.pycharm",
52
+ ]
53
+ - repo: https://github.com/nbQA-dev/nbQA
54
+ rev: 1.7.1
55
+ hooks:
56
+ - id: nbqa-black
57
+ - id: nbqa-pyupgrade
58
+ args: ["--py37-plus"]
59
+ - id: nbqa-isort
60
+ args: ["--float-to-top"]
.style.yapf DELETED
@@ -1,5 +0,0 @@
1
- [style]
2
- based_on_style = pep8
3
- blank_line_before_nested_class_or_def = false
4
- spaces_before_comment = 2
5
- split_before_logical_operator = true
 
 
 
 
 
 
.vscode/settings.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "editor.formatOnSave": true,
3
+ "files.insertFinalNewline": false,
4
+ "[python]": {
5
+ "editor.defaultFormatter": "ms-python.black-formatter",
6
+ "editor.formatOnType": true,
7
+ "editor.codeActionsOnSave": {
8
+ "source.organizeImports": "explicit"
9
+ }
10
+ },
11
+ "[jupyter]": {
12
+ "files.insertFinalNewline": false
13
+ },
14
+ "black-formatter.args": [
15
+ "--line-length=119"
16
+ ],
17
+ "isort.args": ["--profile", "black"],
18
+ "flake8.args": [
19
+ "--max-line-length=119"
20
+ ],
21
+ "ruff.lint.args": [
22
+ "--line-length=119"
23
+ ],
24
+ "notebook.output.scrolling": true,
25
+ "notebook.formatOnCellExecution": true,
26
+ "notebook.formatOnSave.enabled": true,
27
+ "notebook.codeActionsOnSave": {
28
+ "source.organizeImports": "explicit"
29
+ }
30
+ }
README.md CHANGED
@@ -4,7 +4,7 @@ emoji: 🦀
4
  colorFrom: blue
5
  colorTo: pink
6
  sdk: gradio
7
- sdk_version: 3.36.1
8
  app_file: app.py
9
  pinned: false
10
  ---
 
4
  colorFrom: blue
5
  colorTo: pink
6
  sdk: gradio
7
+ sdk_version: 4.19.2
8
  app_file: app.py
9
  pinned: false
10
  ---
app.py CHANGED
@@ -14,12 +14,10 @@ import torch
14
  import torch.nn as nn
15
  import torch.nn.functional as F
16
 
17
- DESCRIPTION = '# [Age Estimation](https://github.com/yu4u/age-estimation-pytorch)'
18
 
19
 
20
- def get_model(model_name='se_resnext50_32x4d',
21
- num_classes=101,
22
- pretrained='imagenet'):
23
  model = pretrainedmodels.__dict__[model_name](pretrained=pretrained)
24
  dim_feats = model.last_linear.in_features
25
  model.last_linear = nn.Linear(dim_feats, num_classes)
@@ -28,9 +26,8 @@ def get_model(model_name='se_resnext50_32x4d',
28
 
29
 
30
  def load_model(device):
31
- model = get_model(model_name='se_resnext50_32x4d', pretrained=None)
32
- path = huggingface_hub.hf_hub_download(
33
- 'public-data/yu4u-age-estimation-pytorch', 'pretrained.pth')
34
  model.load_state_dict(torch.load(path))
35
  model = model.to(device)
36
  model.eval()
@@ -47,23 +44,11 @@ def load_image(path):
47
  return image
48
 
49
 
50
- def draw_label(image,
51
- point,
52
- label,
53
- font=cv2.FONT_HERSHEY_SIMPLEX,
54
- font_scale=0.8,
55
- thickness=1):
56
  size = cv2.getTextSize(label, font, font_scale, thickness)[0]
57
  x, y = point
58
- cv2.rectangle(image, (x, y - size[1]), (x + size[0], y), (255, 0, 0),
59
- cv2.FILLED)
60
- cv2.putText(image,
61
- label,
62
- point,
63
- font,
64
- font_scale, (255, 255, 255),
65
- thickness,
66
- lineType=cv2.LINE_AA)
67
 
68
 
69
  @torch.inference_mode()
@@ -77,55 +62,58 @@ def predict(image, model, face_detector, device, margin=0.4, input_size=224):
77
 
78
  if len(detected) > 0:
79
  for i, d in enumerate(detected):
80
- x1, y1, x2, y2, w, h = d.left(), d.top(
81
- ), d.right() + 1, d.bottom() + 1, d.width(), d.height()
82
  xw1 = max(int(x1 - margin * w), 0)
83
  yw1 = max(int(y1 - margin * h), 0)
84
  xw2 = min(int(x2 + margin * w), image_w - 1)
85
  yw2 = min(int(y2 + margin * h), image_h - 1)
86
- faces[i] = cv2.resize(image[yw1:yw2 + 1, xw1:xw2 + 1],
87
- (input_size, input_size))
88
 
89
  cv2.rectangle(image, (x1, y1), (x2, y2), (255, 255, 255), 2)
90
  cv2.rectangle(image, (xw1, yw1), (xw2, yw2), (255, 0, 0), 2)
91
 
92
  # predict ages
93
- inputs = torch.from_numpy(
94
- np.transpose(faces.astype(np.float32), (0, 3, 1, 2))).to(device)
95
  outputs = F.softmax(model(inputs), dim=-1).cpu().numpy()
96
  ages = np.arange(0, 101)
97
  predicted_ages = (outputs * ages).sum(axis=-1)
98
 
99
  # draw results
100
  for age, d in zip(predicted_ages, detected):
101
- draw_label(image, (d.left(), d.top()), f'{int(age)}')
102
  return image
103
 
104
 
105
- device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
106
  model = load_model(device)
107
  face_detector = dlib.get_frontal_face_detector()
108
- fn = functools.partial(predict,
109
- model=model,
110
- face_detector=face_detector,
111
- device=device)
112
 
113
- image_dir = pathlib.Path('sample_images')
114
- examples = [path.as_posix() for path in sorted(image_dir.glob('*.jpg'))]
115
 
116
- with gr.Blocks(css='style.css') as demo:
117
  gr.Markdown(DESCRIPTION)
118
  with gr.Row():
119
  with gr.Column():
120
- image = gr.Image(label='Input', type='filepath')
121
- run_button = gr.Button('Run')
122
  with gr.Column():
123
- result = gr.Image(label='Result')
124
-
125
- gr.Examples(examples=examples,
126
- inputs=image,
127
- outputs=result,
128
- fn=fn,
129
- cache_examples=os.getenv('CACHE_EXAMPLES') == '1')
130
- run_button.click(fn=fn, inputs=image, outputs=result, api_name='predict')
131
- demo.queue(max_size=15).launch()
 
 
 
 
 
 
 
 
 
 
14
  import torch.nn as nn
15
  import torch.nn.functional as F
16
 
17
+ DESCRIPTION = "# [Age Estimation](https://github.com/yu4u/age-estimation-pytorch)"
18
 
19
 
20
+ def get_model(model_name="se_resnext50_32x4d", num_classes=101, pretrained="imagenet"):
 
 
21
  model = pretrainedmodels.__dict__[model_name](pretrained=pretrained)
22
  dim_feats = model.last_linear.in_features
23
  model.last_linear = nn.Linear(dim_feats, num_classes)
 
26
 
27
 
28
  def load_model(device):
29
+ model = get_model(model_name="se_resnext50_32x4d", pretrained=None)
30
+ path = huggingface_hub.hf_hub_download("public-data/yu4u-age-estimation-pytorch", "pretrained.pth")
 
31
  model.load_state_dict(torch.load(path))
32
  model = model.to(device)
33
  model.eval()
 
44
  return image
45
 
46
 
47
+ def draw_label(image, point, label, font=cv2.FONT_HERSHEY_SIMPLEX, font_scale=0.8, thickness=1):
 
 
 
 
 
48
  size = cv2.getTextSize(label, font, font_scale, thickness)[0]
49
  x, y = point
50
+ cv2.rectangle(image, (x, y - size[1]), (x + size[0], y), (255, 0, 0), cv2.FILLED)
51
+ cv2.putText(image, label, point, font, font_scale, (255, 255, 255), thickness, lineType=cv2.LINE_AA)
 
 
 
 
 
 
 
52
 
53
 
54
  @torch.inference_mode()
 
62
 
63
  if len(detected) > 0:
64
  for i, d in enumerate(detected):
65
+ x1, y1, x2, y2, w, h = d.left(), d.top(), d.right() + 1, d.bottom() + 1, d.width(), d.height()
 
66
  xw1 = max(int(x1 - margin * w), 0)
67
  yw1 = max(int(y1 - margin * h), 0)
68
  xw2 = min(int(x2 + margin * w), image_w - 1)
69
  yw2 = min(int(y2 + margin * h), image_h - 1)
70
+ faces[i] = cv2.resize(image[yw1 : yw2 + 1, xw1 : xw2 + 1], (input_size, input_size))
 
71
 
72
  cv2.rectangle(image, (x1, y1), (x2, y2), (255, 255, 255), 2)
73
  cv2.rectangle(image, (xw1, yw1), (xw2, yw2), (255, 0, 0), 2)
74
 
75
  # predict ages
76
+ inputs = torch.from_numpy(np.transpose(faces.astype(np.float32), (0, 3, 1, 2))).to(device)
 
77
  outputs = F.softmax(model(inputs), dim=-1).cpu().numpy()
78
  ages = np.arange(0, 101)
79
  predicted_ages = (outputs * ages).sum(axis=-1)
80
 
81
  # draw results
82
  for age, d in zip(predicted_ages, detected):
83
+ draw_label(image, (d.left(), d.top()), f"{int(age)}")
84
  return image
85
 
86
 
87
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
88
  model = load_model(device)
89
  face_detector = dlib.get_frontal_face_detector()
90
+ fn = functools.partial(predict, model=model, face_detector=face_detector, device=device)
 
 
 
91
 
92
+ image_dir = pathlib.Path("sample_images")
93
+ examples = [path.as_posix() for path in sorted(image_dir.glob("*.jpg"))]
94
 
95
+ with gr.Blocks(css="style.css") as demo:
96
  gr.Markdown(DESCRIPTION)
97
  with gr.Row():
98
  with gr.Column():
99
+ image = gr.Image(label="Input", type="filepath")
100
+ run_button = gr.Button("Run")
101
  with gr.Column():
102
+ result = gr.Image(label="Result")
103
+
104
+ gr.Examples(
105
+ examples=examples,
106
+ inputs=image,
107
+ outputs=result,
108
+ fn=fn,
109
+ cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
110
+ )
111
+ run_button.click(
112
+ fn=fn,
113
+ inputs=image,
114
+ outputs=result,
115
+ api_name="predict",
116
+ )
117
+
118
+ if __name__ == "__main__":
119
+ demo.queue(max_size=15).launch()
requirements.txt CHANGED
@@ -1,6 +1,6 @@
1
- dlib>=19.23
2
- numpy>=1.22.2
3
- opencv-python-headless>=4.5.5.62
4
- pretrainedmodels>=0.7.4
5
- torch>=1.10.2
6
- torchvision>=0.11.3
 
1
+ dlib==19.24.2
2
+ numpy==1.26.4
3
+ opencv-python-headless==4.9.0.80
4
+ pretrainedmodels==0.7.4
5
+ torch==2.0.1
6
+ torchvision==0.15.2
style.css CHANGED
@@ -1,3 +1,11 @@
1
  h1 {
2
  text-align: center;
 
 
 
 
 
 
 
 
3
  }
 
1
  h1 {
2
  text-align: center;
3
+ display: block;
4
+ }
5
+
6
+ #duplicate-button {
7
+ margin: auto;
8
+ color: #fff;
9
+ background: #1565c0;
10
+ border-radius: 100vh;
11
  }