|
|
|
|
|
from __future__ import annotations |
|
|
|
import functools |
|
import os |
|
import pathlib |
|
import sys |
|
import tarfile |
|
from typing import Callable |
|
|
|
import gradio as gr |
|
import huggingface_hub |
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
import torch.nn as nn |
|
import torchvision |
|
import torchvision.transforms as T |
|
|
|
sys.path.insert(0, "bizarre-pose-estimator") |
|
|
|
from _util.twodee_v0 import I as ImageWrapper |
|
|
|
DESCRIPTION = ( |
|
"# [ShuhongChen/bizarre-pose-estimator (segmenter)](https://github.com/ShuhongChen/bizarre-pose-estimator)" |
|
) |
|
|
|
|
|
def load_sample_image_paths() -> list[pathlib.Path]: |
|
image_dir = pathlib.Path("images") |
|
if not image_dir.exists(): |
|
dataset_repo = "hysts/sample-images-TADNE" |
|
path = huggingface_hub.hf_hub_download(dataset_repo, "images.tar.gz", repo_type="dataset") |
|
with tarfile.open(path) as f: |
|
f.extractall() |
|
return sorted(image_dir.glob("*")) |
|
|
|
|
|
def load_model(device: torch.device) -> tuple[torch.nn.Module, torch.nn.Module]: |
|
path = huggingface_hub.hf_hub_download("public-data/bizarre-pose-estimator-models", "segmenter.pth") |
|
ckpt = torch.load(path) |
|
|
|
model = torchvision.models.segmentation.deeplabv3_resnet101() |
|
model.classifier = nn.Sequential( |
|
torchvision.models.segmentation.deeplabv3.ASPP(2048, [12, 24, 36]), |
|
nn.Conv2d(256, 64, kernel_size=3, stride=1, padding=1), |
|
nn.BatchNorm2d(64), |
|
nn.LeakyReLU(), |
|
nn.Conv2d(64, 16, kernel_size=3, stride=1, padding=1), |
|
nn.BatchNorm2d(16), |
|
nn.LeakyReLU(), |
|
) |
|
final_head = nn.Sequential( |
|
nn.Conv2d(16 + 3, 16, kernel_size=3, stride=1, padding=1), |
|
nn.BatchNorm2d(16), |
|
nn.LeakyReLU(), |
|
nn.Conv2d(16, 8, kernel_size=3, stride=1, padding=1), |
|
nn.BatchNorm2d(8), |
|
nn.LeakyReLU(), |
|
nn.Conv2d(8, 2, kernel_size=1, stride=1), |
|
) |
|
model.load_state_dict(ckpt["model"]) |
|
final_head.load_state_dict(ckpt["final_head"]) |
|
model.to(device) |
|
model.eval() |
|
final_head.to(device) |
|
final_head.eval() |
|
return model, final_head |
|
|
|
|
|
@torch.inference_mode() |
|
def predict( |
|
image: PIL.Image.Image, |
|
score_threshold: float, |
|
transform: Callable, |
|
device: torch.device, |
|
model: torch.nn.Module, |
|
final_head: torch.nn.Module, |
|
) -> np.ndarray: |
|
data = ImageWrapper(image).resize_min(256).convert("RGBA").alpha_bg(1).convert("RGB").pil() |
|
data = torchvision.transforms.functional.to_tensor(data) |
|
data = transform(data) |
|
data = data.to(device).unsqueeze(0) |
|
|
|
out = model(data)["out"] |
|
out_fin = final_head( |
|
torch.cat( |
|
[ |
|
out, |
|
data, |
|
], |
|
dim=1, |
|
) |
|
) |
|
probs = torch.softmax(out_fin, dim=1)[0] |
|
probs = probs[1] |
|
probs = PIL.Image.fromarray(probs.cpu().numpy()).resize(image.size) |
|
|
|
mask = np.asarray(probs).copy() |
|
mask[mask < score_threshold] = 0 |
|
mask[mask > 0] = 1 |
|
mask = mask.astype(bool) |
|
|
|
res = np.asarray(image).copy() |
|
res[~mask] = 255 |
|
return res |
|
|
|
|
|
image_paths = load_sample_image_paths() |
|
examples = [[path.as_posix(), 0.5] for path in image_paths] |
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
model, final_head = load_model(device) |
|
transform = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) |
|
|
|
fn = functools.partial(predict, transform=transform, device=device, model=model, final_head=final_head) |
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
gr.Markdown(DESCRIPTION) |
|
with gr.Row(): |
|
with gr.Column(): |
|
image = gr.Image(label="Input", type="pil") |
|
threshold = gr.Slider(label="Score Threshold", minimum=0, maximum=1, step=0.05, value=0.5) |
|
run_button = gr.Button("Run") |
|
with gr.Column(): |
|
result = gr.Image(label="Masked") |
|
|
|
inputs = [image, threshold] |
|
gr.Examples( |
|
examples=examples, |
|
inputs=inputs, |
|
outputs=result, |
|
fn=fn, |
|
cache_examples=os.getenv("CACHE_EXAMPLES") == "1", |
|
) |
|
run_button.click( |
|
fn=fn, |
|
inputs=inputs, |
|
outputs=result, |
|
api_name="predict", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=15).launch() |
|
|