Spaces:
Running
Running
File size: 3,794 Bytes
6e8417e afe6a1b e47e2e6 afe6a1b 327f5da afe6a1b 6e8417e afe6a1b 6e8417e afe6a1b 6e8417e afe6a1b 6e8417e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
#!/usr/bin/env python
from __future__ import annotations
import argparse
import gradio as gr
import numpy as np
from model import Model
TITLE = '# autonomousvision/projected_gan'
DESCRIPTION = '''This is an unofficial demo for [https://github.com/autonomousvision/projected_gan](https://github.com/autonomousvision/projected_gan).
Expected execution time on Hugging Face Spaces: 1s
'''
FOOTER = '<img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.glitch.me/badge?page_id=hysts.projected_gan" />'
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--theme', type=str)
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
return parser.parse_args()
def get_sample_image_url(name: str) -> str:
sample_image_dir = 'https://huggingface.co/spaces/hysts/projected_gan/resolve/main/samples'
return f'{sample_image_dir}/{name}.jpg'
def get_sample_image_markdown(name: str) -> str:
url = get_sample_image_url(name)
return f'''
- size: 256x256
- seed: 0-99
- truncation: 0.7
![sample images]({url})'''
def main():
args = parse_args()
model = Model(args.device)
with gr.Blocks(theme=args.theme, css='style.css') as demo:
gr.Markdown(TITLE)
gr.Markdown(DESCRIPTION)
with gr.Tabs():
with gr.TabItem('App'):
with gr.Row():
with gr.Column():
with gr.Group():
model_name = gr.Dropdown(
model.MODEL_NAMES,
value=model.MODEL_NAMES[8],
label='Model')
seed = gr.Slider(0,
np.iinfo(np.uint32).max,
step=1,
value=0,
label='Seed')
psi = gr.Slider(0,
2,
step=0.05,
value=0.7,
label='Truncation psi')
run_button = gr.Button('Run')
with gr.Column():
result = gr.Image(label='Result', elem_id='result')
with gr.TabItem('Sample Images'):
with gr.Row():
model_name2 = gr.Dropdown(model.MODEL_NAMES,
value=model.MODEL_NAMES[0],
label='Model')
with gr.Row():
text = get_sample_image_markdown(model_name2.value)
sample_images = gr.Markdown(text)
gr.Markdown(FOOTER)
model_name.change(fn=model.set_model, inputs=model_name, outputs=None)
run_button.click(fn=model.set_model_and_generate_image,
inputs=[
model_name,
seed,
psi,
],
outputs=result)
model_name2.change(fn=get_sample_image_markdown,
inputs=model_name2,
outputs=sample_images)
demo.launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()
|