File size: 953 Bytes
466fc4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained(
'kakaobrain/kogpt', revision='KoGPT6B-ryan1.5b-float16', # or float32 version: revision=KoGPT6B-ryan1.5b
bos_token='[BOS]', eos_token='[EOS]', unk_token='[UNK]', pad_token='[PAD]', mask_token='[MASK]'
)
model = AutoModelForCausalLM.from_pretrained(
'kakaobrain/kogpt', revision='KoGPT6B-ryan1.5b-float16', # or float32 version: revision=KoGPT6B-ryan1.5b
pad_token_id=tokenizer.eos_token_id,
torch_dtype='auto', low_cpu_mem_usage=True
).to(device='cuda', non_blocking=True)
_ = model.eval()
prompt = 'μΈκ³΅μ§λ₯μ, λλ λ§μ ν μ μλ?'
with torch.no_grad():
tokens = tokenizer.encode(prompt, return_tensors='pt').to(device='cuda', non_blocking=True)
gen_tokens = model.generate(tokens, do_sample=True, temperature=0.8, max_length=64)
generated = tokenizer.batch_decode(gen_tokens)[0]
print(generated) |