Commit
·
93fbe7f
1
Parent(s):
09e9996
Upload bert-finetuned.py
Browse files- bert-finetuned.py +29 -0
bert-finetuned.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import (
|
2 |
+
pipeline,
|
3 |
+
AutoModelForQuestionAnswering,
|
4 |
+
AutoTokenizer,
|
5 |
+
)
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
# set up model name
|
9 |
+
model_name = "hzsushiqiren/bert-finetuned-squad"
|
10 |
+
|
11 |
+
#set up model to run
|
12 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
13 |
+
|
14 |
+
#set up tokenizer
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
16 |
+
|
17 |
+
#set up pipeline
|
18 |
+
nlp = pipeline('question-answering', model=model, tokenizer=tokenizer)
|
19 |
+
|
20 |
+
# creating the function
|
21 |
+
def func(context, question):
|
22 |
+
result = nlp(question = question, context = context)
|
23 |
+
return result['answer']
|
24 |
+
|
25 |
+
# creating the interface
|
26 |
+
app = gr.Interface(fn=func, inputs = ['textbox', 'text'], outputs = 'textbox', title = 'Swinburne Online FAQs Answering bot', theme = 'dark-grass', description = 'Input context and question, then get answers!')
|
27 |
+
|
28 |
+
# launching the app
|
29 |
+
app.launch(inline=False, share=True)
|