Spaces:
Runtime error
Runtime error
import os | |
import datetime | |
import einops | |
import gradio as gr | |
from gradio_imageslider import ImageSlider | |
import numpy as np | |
import torch | |
import random | |
from PIL import Image | |
from pathlib import Path | |
from torchvision import transforms | |
import torch.nn.functional as F | |
from torchvision.models import resnet50, ResNet50_Weights | |
from pytorch_lightning import seed_everything | |
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor | |
from diffusers import AutoencoderKL, DDIMScheduler, PNDMScheduler, DPMSolverMultistepScheduler, UniPCMultistepScheduler | |
from pipelines.pipeline_pasd import StableDiffusionControlNetPipeline | |
from myutils.misc import load_dreambooth_lora, rand_name | |
from myutils.wavelet_color_fix import wavelet_color_fix | |
from annotator.retinaface import RetinaFaceDetection | |
use_pasd_light = False | |
face_detector = RetinaFaceDetection() | |
if use_pasd_light: | |
from models.pasd_light.unet_2d_condition import UNet2DConditionModel | |
from models.pasd_light.controlnet import ControlNetModel | |
else: | |
from models.pasd.unet_2d_condition import UNet2DConditionModel | |
from models.pasd.controlnet import ControlNetModel | |
pretrained_model_path = "checkpoints/stable-diffusion-v1-5" | |
ckpt_path = "runs/pasd/checkpoint-100000" | |
#dreambooth_lora_path = "checkpoints/personalized_models/toonyou_beta3.safetensors" | |
dreambooth_lora_path = "checkpoints/personalized_models/majicmixRealistic_v6.safetensors" | |
#dreambooth_lora_path = "checkpoints/personalized_models/Realistic_Vision_V5.1.safetensors" | |
weight_dtype = torch.float16 | |
device = "cuda" | |
scheduler = UniPCMultistepScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler") | |
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder") | |
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer") | |
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae") | |
feature_extractor = CLIPImageProcessor.from_pretrained(f"{pretrained_model_path}/feature_extractor") | |
unet = UNet2DConditionModel.from_pretrained(ckpt_path, subfolder="unet") | |
controlnet = ControlNetModel.from_pretrained(ckpt_path, subfolder="controlnet") | |
vae.requires_grad_(False) | |
text_encoder.requires_grad_(False) | |
unet.requires_grad_(False) | |
controlnet.requires_grad_(False) | |
unet, vae, text_encoder = load_dreambooth_lora(unet, vae, text_encoder, dreambooth_lora_path) | |
text_encoder.to(device, dtype=weight_dtype) | |
vae.to(device, dtype=weight_dtype) | |
unet.to(device, dtype=weight_dtype) | |
controlnet.to(device, dtype=weight_dtype) | |
validation_pipeline = StableDiffusionControlNetPipeline( | |
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, feature_extractor=feature_extractor, | |
unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=None, requires_safety_checker=False, | |
) | |
#validation_pipeline.enable_vae_tiling() | |
validation_pipeline._init_tiled_vae(decoder_tile_size=224) | |
weights = ResNet50_Weights.DEFAULT | |
preprocess = weights.transforms() | |
resnet = resnet50(weights=weights) | |
resnet.eval() | |
def resize_image(image_path, target_height): | |
# Open the image file | |
with Image.open(image_path) as img: | |
# Calculate the ratio to resize the image to the target height | |
ratio = target_height / float(img.size[1]) | |
# Calculate the new width based on the aspect ratio | |
new_width = int(float(img.size[0]) * ratio) | |
# Resize the image | |
resized_img = img.resize((new_width, target_height), Image.LANCZOS) | |
# Save the resized image | |
#resized_img.save(output_path) | |
return resized_img | |
def inference(input_image, prompt, a_prompt, n_prompt, denoise_steps, upscale, alpha, cfg, seed): | |
input_image = resize_image(input_image, 512) | |
process_size = 768 | |
resize_preproc = transforms.Compose([ | |
transforms.Resize(process_size, interpolation=transforms.InterpolationMode.BILINEAR), | |
]) | |
# Get the current timestamp | |
timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S") | |
with torch.no_grad(): | |
seed_everything(seed) | |
generator = torch.Generator(device=device) | |
input_image = input_image.convert('RGB') | |
batch = preprocess(input_image).unsqueeze(0) | |
prediction = resnet(batch).squeeze(0).softmax(0) | |
class_id = prediction.argmax().item() | |
score = prediction[class_id].item() | |
category_name = weights.meta["categories"][class_id] | |
if score >= 0.1: | |
prompt += f"{category_name}" if prompt=='' else f", {category_name}" | |
prompt = a_prompt if prompt=='' else f"{prompt}, {a_prompt}" | |
ori_width, ori_height = input_image.size | |
resize_flag = False | |
rscale = upscale | |
input_image = input_image.resize((input_image.size[0]*rscale, input_image.size[1]*rscale)) | |
#if min(validation_image.size) < process_size: | |
# validation_image = resize_preproc(validation_image) | |
input_image = input_image.resize((input_image.size[0]//8*8, input_image.size[1]//8*8)) | |
width, height = input_image.size | |
resize_flag = True # | |
try: | |
image = validation_pipeline( | |
None, prompt, input_image, num_inference_steps=denoise_steps, generator=generator, height=height, width=width, guidance_scale=cfg, | |
negative_prompt=n_prompt, conditioning_scale=alpha, eta=0.0, | |
).images[0] | |
if True: #alpha<1.0: | |
image = wavelet_color_fix(image, input_image) | |
if resize_flag: | |
image = image.resize((ori_width*rscale, ori_height*rscale)) | |
except Exception as e: | |
print(e) | |
image = Image.new(mode="RGB", size=(512, 512)) | |
# Convert and save the image as JPEG | |
image.save(f'result_{timestamp}.jpg', 'JPEG') | |
# Convert and save the image as JPEG | |
input_image.save(f'input_{timestamp}.jpg', 'JPEG') | |
return (f"input_{timestamp}.jpg", f"result_{timestamp}.jpg"), f"result_{timestamp}.jpg" | |
title = "Pixel-Aware Stable Diffusion for Real-ISR" | |
description = "Gradio Demo for PASD Real-ISR. To use it, simply upload your image, or click one of the examples to load them." | |
article = "<a href='https://github.com/yangxy/PASD' target='_blank'>Github Repo Pytorch</a>" | |
#examples=[['samples/27d38eeb2dbbe7c9.png'],['samples/629e4da70703193b.png']] | |
css = """ | |
#col-container{ | |
margin: 0 auto; | |
max-width: 720px; | |
} | |
#project-links{ | |
margin: 0 0 12px !important; | |
column-gap: 8px; | |
display: flex; | |
justify-content: center; | |
flex-wrap: nowrap; | |
flex-direction: row; | |
align-items: center; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.HTML(f""" | |
<h2 style="text-align: center;"> | |
PASD Magnify | |
</h2> | |
<p style="text-align: center;"> | |
Pixel-Aware Stable Diffusion for Realistic Image Super-resolution and Personalized Stylization | |
</p> | |
<p id="project-links" align="center"> | |
<a href='https://github.com/yangxy/PASD'><img src='https://img.shields.io/badge/Project-Page-Green'></a> <a href='https://huggingface.co/papers/2308.14469'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a> | |
</p> | |
<p style="margin:12px auto;display: flex;justify-content: center;"> | |
<a href="https://huggingface.co/spaces/fffiloni/PASD?duplicate=true"><img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg.svg" alt="Duplicate this Space"></a> | |
</p> | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(type="filepath", sources=["upload"], value="samples/frog.png") | |
prompt_in = gr.Textbox(label="Prompt", value="Frog") | |
with gr.Accordion(label="Advanced settings", open=False): | |
added_prompt = gr.Textbox(label="Added Prompt", value='clean, high-resolution, 8k, best quality, masterpiece') | |
neg_prompt = gr.Textbox(label="Negative Prompt",value='dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality') | |
denoise_steps = gr.Slider(label="Denoise Steps", minimum=10, maximum=50, value=20, step=1) | |
upsample_scale = gr.Slider(label="Upsample Scale", minimum=1, maximum=4, value=2, step=1) | |
condition_scale = gr.Slider(label="Conditioning Scale", minimum=0.5, maximum=1.5, value=1.1, step=0.1) | |
classifier_free_guidance = gr.Slider(label="Classier-free Guidance", minimum=0.1, maximum=10.0, value=7.5, step=0.1) | |
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) | |
submit_btn = gr.Button("Submit") | |
with gr.Column(): | |
b_a_slider = ImageSlider(label="B/A result", position=0.5) | |
file_output = gr.File(label="Downloadable image result") | |
submit_btn.click( | |
fn = inference, | |
inputs = [ | |
input_image, prompt_in, | |
added_prompt, neg_prompt, | |
denoise_steps, | |
upsample_scale, condition_scale, | |
classifier_free_guidance, seed | |
], | |
outputs = [ | |
b_a_slider, | |
file_output | |
] | |
) | |
demo.queue().launch() |