fffiloni commited on
Commit
39d895b
·
verified ·
1 Parent(s): 2eb9b9f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -5
app.py CHANGED
@@ -1,3 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import spaces
2
  import os
3
  import datetime
@@ -32,10 +63,10 @@ else:
32
  from models.pasd.unet_2d_condition import UNet2DConditionModel
33
  from models.pasd.controlnet import ControlNetModel
34
 
35
- pretrained_model_path = "checkpoints/stable-diffusion-v1-5"
36
- ckpt_path = "runs/pasd/checkpoint-100000"
37
  #dreambooth_lora_path = "checkpoints/personalized_models/toonyou_beta3.safetensors"
38
- dreambooth_lora_path = "checkpoints/personalized_models/majicmixRealistic_v6.safetensors"
39
  #dreambooth_lora_path = "checkpoints/personalized_models/Realistic_Vision_V5.1.safetensors"
40
  weight_dtype = torch.float16
41
  device = "cuda"
@@ -44,7 +75,7 @@ scheduler = UniPCMultistepScheduler.from_pretrained(pretrained_model_path, subfo
44
  text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
45
  tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
46
  vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
47
- feature_extractor = CLIPImageProcessor.from_pretrained(f"{pretrained_model_path}/feature_extractor")
48
  unet = UNet2DConditionModel.from_pretrained(ckpt_path, subfolder="unet")
49
  controlnet = ControlNetModel.from_pretrained(ckpt_path, subfolder="controlnet")
50
  vae.requires_grad_(False)
@@ -191,7 +222,7 @@ with gr.Blocks(css=css) as demo:
191
  """)
192
  with gr.Row():
193
  with gr.Column():
194
- input_image = gr.Image(type="filepath", sources=["upload"], value="samples/frog.png")
195
  prompt_in = gr.Textbox(label="Prompt", value="Frog")
196
  with gr.Accordion(label="Advanced settings", open=False):
197
  added_prompt = gr.Textbox(label="Added Prompt", value='clean, high-resolution, 8k, best quality, masterpiece')
 
1
+ import torch
2
+ import types
3
+ torch.cuda.get_device_capability = lambda *args, **kwargs: (8, 6)
4
+ torch.cuda.get_device_properties = lambda *args, **kwargs: types.SimpleNamespace(name='NVIDIA A10G', major=8, minor=6, total_memory=23836033024, multi_processor_count=80)
5
+
6
+ import huggingface_hub
7
+ huggingface_hub.snapshot_download(
8
+ repo_id='camenduru/PASD',
9
+ allow_patterns=[
10
+ 'pasd/**',
11
+ 'pasd_light/**',
12
+ 'pasd_light_rrdb/**',
13
+ 'pasd_rrdb/**',
14
+ ],
15
+ local_dir='PASD/runs',
16
+ local_dir_use_symlinks=False,
17
+ )
18
+ huggingface_hub.hf_hub_download(
19
+ repo_id='camenduru/PASD',
20
+ filename='majicmixRealistic_v6.safetensors',
21
+ local_dir='PASD/checkpoints/personalized_models',
22
+ local_dir_use_symlinks=False,
23
+ )
24
+ huggingface_hub.hf_hub_download(
25
+ repo_id='akhaliq/RetinaFace-R50',
26
+ filename='RetinaFace-R50.pth',
27
+ local_dir='PASD/annotator/ckpts',
28
+ local_dir_use_symlinks=False,
29
+ )
30
+
31
+ import sys; sys.path.append('./PASD')
32
  import spaces
33
  import os
34
  import datetime
 
63
  from models.pasd.unet_2d_condition import UNet2DConditionModel
64
  from models.pasd.controlnet import ControlNetModel
65
 
66
+ pretrained_model_path = "runwayml/stable-diffusion-v1-5"
67
+ ckpt_path = "PASD/runs/pasd/checkpoint-100000"
68
  #dreambooth_lora_path = "checkpoints/personalized_models/toonyou_beta3.safetensors"
69
+ dreambooth_lora_path = "PASD/checkpoints/personalized_models/majicmixRealistic_v6.safetensors"
70
  #dreambooth_lora_path = "checkpoints/personalized_models/Realistic_Vision_V5.1.safetensors"
71
  weight_dtype = torch.float16
72
  device = "cuda"
 
75
  text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
76
  tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
77
  vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
78
+ feature_extractor = CLIPImageProcessor.from_pretrained(pretrained_model_path, subfolder="feature_extractor")
79
  unet = UNet2DConditionModel.from_pretrained(ckpt_path, subfolder="unet")
80
  controlnet = ControlNetModel.from_pretrained(ckpt_path, subfolder="controlnet")
81
  vae.requires_grad_(False)
 
222
  """)
223
  with gr.Row():
224
  with gr.Column():
225
+ input_image = gr.Image(type="filepath", sources=["upload"], value="PASD/samples/frog.png")
226
  prompt_in = gr.Textbox(label="Prompt", value="Frog")
227
  with gr.Accordion(label="Advanced settings", open=False):
228
  added_prompt = gr.Textbox(label="Added Prompt", value='clean, high-resolution, 8k, best quality, masterpiece')