Spaces:
Runtime error
Runtime error
Create app_zero.py
Browse files- app_zero.py +254 -0
app_zero.py
ADDED
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import types
|
3 |
+
torch.cuda.get_device_capability = lambda *args, **kwargs: (8, 6)
|
4 |
+
torch.cuda.get_device_properties = lambda *args, **kwargs: types.SimpleNamespace(name='NVIDIA A10G', major=8, minor=6, total_memory=23836033024, multi_processor_count=80)
|
5 |
+
|
6 |
+
import huggingface_hub
|
7 |
+
huggingface_hub.snapshot_download(
|
8 |
+
repo_id='camenduru/PASD',
|
9 |
+
allow_patterns=[
|
10 |
+
'pasd/**',
|
11 |
+
'pasd_light/**',
|
12 |
+
'pasd_light_rrdb/**',
|
13 |
+
'pasd_rrdb/**',
|
14 |
+
],
|
15 |
+
local_dir='PASD/runs',
|
16 |
+
local_dir_use_symlinks=False,
|
17 |
+
)
|
18 |
+
huggingface_hub.hf_hub_download(
|
19 |
+
repo_id='camenduru/PASD',
|
20 |
+
filename='majicmixRealistic_v6.safetensors',
|
21 |
+
local_dir='PASD/checkpoints/personalized_models',
|
22 |
+
local_dir_use_symlinks=False,
|
23 |
+
)
|
24 |
+
huggingface_hub.hf_hub_download(
|
25 |
+
repo_id='akhaliq/RetinaFace-R50',
|
26 |
+
filename='RetinaFace-R50.pth',
|
27 |
+
local_dir='PASD/annotator/ckpts',
|
28 |
+
local_dir_use_symlinks=False,
|
29 |
+
)
|
30 |
+
|
31 |
+
import sys; sys.path.append('./PASD')
|
32 |
+
import spaces
|
33 |
+
import os
|
34 |
+
import datetime
|
35 |
+
import einops
|
36 |
+
import gradio as gr
|
37 |
+
from gradio_imageslider import ImageSlider
|
38 |
+
import numpy as np
|
39 |
+
import torch
|
40 |
+
import random
|
41 |
+
from PIL import Image
|
42 |
+
from pathlib import Path
|
43 |
+
from torchvision import transforms
|
44 |
+
import torch.nn.functional as F
|
45 |
+
from torchvision.models import resnet50, ResNet50_Weights
|
46 |
+
|
47 |
+
from pytorch_lightning import seed_everything
|
48 |
+
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor
|
49 |
+
from diffusers import AutoencoderKL, DDIMScheduler, PNDMScheduler, DPMSolverMultistepScheduler, UniPCMultistepScheduler
|
50 |
+
|
51 |
+
from pipelines.pipeline_pasd import StableDiffusionControlNetPipeline
|
52 |
+
from myutils.misc import load_dreambooth_lora, rand_name
|
53 |
+
from myutils.wavelet_color_fix import wavelet_color_fix
|
54 |
+
from annotator.retinaface import RetinaFaceDetection
|
55 |
+
|
56 |
+
use_pasd_light = False
|
57 |
+
face_detector = RetinaFaceDetection()
|
58 |
+
|
59 |
+
if use_pasd_light:
|
60 |
+
from models.pasd_light.unet_2d_condition import UNet2DConditionModel
|
61 |
+
from models.pasd_light.controlnet import ControlNetModel
|
62 |
+
else:
|
63 |
+
from models.pasd.unet_2d_condition import UNet2DConditionModel
|
64 |
+
from models.pasd.controlnet import ControlNetModel
|
65 |
+
|
66 |
+
pretrained_model_path = "runwayml/stable-diffusion-v1-5"
|
67 |
+
ckpt_path = "PASD/runs/pasd/checkpoint-100000"
|
68 |
+
#dreambooth_lora_path = "checkpoints/personalized_models/toonyou_beta3.safetensors"
|
69 |
+
dreambooth_lora_path = "PASD/checkpoints/personalized_models/majicmixRealistic_v6.safetensors"
|
70 |
+
#dreambooth_lora_path = "checkpoints/personalized_models/Realistic_Vision_V5.1.safetensors"
|
71 |
+
weight_dtype = torch.float16
|
72 |
+
device = "cuda"
|
73 |
+
|
74 |
+
scheduler = UniPCMultistepScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
|
75 |
+
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
|
76 |
+
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
|
77 |
+
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
|
78 |
+
feature_extractor = CLIPImageProcessor.from_pretrained(pretrained_model_path, subfolder="feature_extractor")
|
79 |
+
unet = UNet2DConditionModel.from_pretrained(ckpt_path, subfolder="unet")
|
80 |
+
controlnet = ControlNetModel.from_pretrained(ckpt_path, subfolder="controlnet")
|
81 |
+
vae.requires_grad_(False)
|
82 |
+
text_encoder.requires_grad_(False)
|
83 |
+
unet.requires_grad_(False)
|
84 |
+
controlnet.requires_grad_(False)
|
85 |
+
|
86 |
+
unet, vae, text_encoder = load_dreambooth_lora(unet, vae, text_encoder, dreambooth_lora_path)
|
87 |
+
|
88 |
+
text_encoder.to(device, dtype=weight_dtype)
|
89 |
+
vae.to(device, dtype=weight_dtype)
|
90 |
+
unet.to(device, dtype=weight_dtype)
|
91 |
+
controlnet.to(device, dtype=weight_dtype)
|
92 |
+
|
93 |
+
validation_pipeline = StableDiffusionControlNetPipeline(
|
94 |
+
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, feature_extractor=feature_extractor,
|
95 |
+
unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=None, requires_safety_checker=False,
|
96 |
+
)
|
97 |
+
#validation_pipeline.enable_vae_tiling()
|
98 |
+
validation_pipeline._init_tiled_vae(decoder_tile_size=224)
|
99 |
+
|
100 |
+
weights = ResNet50_Weights.DEFAULT
|
101 |
+
preprocess = weights.transforms()
|
102 |
+
resnet = resnet50(weights=weights)
|
103 |
+
resnet.eval()
|
104 |
+
|
105 |
+
def resize_image(image_path, target_height):
|
106 |
+
# Open the image file
|
107 |
+
with Image.open(image_path) as img:
|
108 |
+
# Calculate the ratio to resize the image to the target height
|
109 |
+
ratio = target_height / float(img.size[1])
|
110 |
+
# Calculate the new width based on the aspect ratio
|
111 |
+
new_width = int(float(img.size[0]) * ratio)
|
112 |
+
# Resize the image
|
113 |
+
resized_img = img.resize((new_width, target_height), Image.LANCZOS)
|
114 |
+
# Save the resized image
|
115 |
+
#resized_img.save(output_path)
|
116 |
+
return resized_img
|
117 |
+
|
118 |
+
@spaces.GPU(enable_queue=True)
|
119 |
+
def inference(input_image, prompt, a_prompt, n_prompt, denoise_steps, upscale, alpha, cfg, seed):
|
120 |
+
|
121 |
+
#tempo fix for seed equals-1
|
122 |
+
if seed == -1:
|
123 |
+
seed = 0
|
124 |
+
|
125 |
+
input_image = resize_image(input_image, 512)
|
126 |
+
process_size = 768
|
127 |
+
resize_preproc = transforms.Compose([
|
128 |
+
transforms.Resize(process_size, interpolation=transforms.InterpolationMode.BILINEAR),
|
129 |
+
])
|
130 |
+
|
131 |
+
# Get the current timestamp
|
132 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
|
133 |
+
|
134 |
+
with torch.no_grad():
|
135 |
+
seed_everything(seed)
|
136 |
+
generator = torch.Generator(device=device)
|
137 |
+
|
138 |
+
input_image = input_image.convert('RGB')
|
139 |
+
batch = preprocess(input_image).unsqueeze(0)
|
140 |
+
prediction = resnet(batch).squeeze(0).softmax(0)
|
141 |
+
class_id = prediction.argmax().item()
|
142 |
+
score = prediction[class_id].item()
|
143 |
+
category_name = weights.meta["categories"][class_id]
|
144 |
+
if score >= 0.1:
|
145 |
+
prompt += f"{category_name}" if prompt=='' else f", {category_name}"
|
146 |
+
|
147 |
+
prompt = a_prompt if prompt=='' else f"{prompt}, {a_prompt}"
|
148 |
+
|
149 |
+
ori_width, ori_height = input_image.size
|
150 |
+
resize_flag = False
|
151 |
+
|
152 |
+
rscale = upscale
|
153 |
+
input_image = input_image.resize((input_image.size[0]*rscale, input_image.size[1]*rscale))
|
154 |
+
|
155 |
+
#if min(validation_image.size) < process_size:
|
156 |
+
# validation_image = resize_preproc(validation_image)
|
157 |
+
|
158 |
+
input_image = input_image.resize((input_image.size[0]//8*8, input_image.size[1]//8*8))
|
159 |
+
width, height = input_image.size
|
160 |
+
resize_flag = True #
|
161 |
+
|
162 |
+
try:
|
163 |
+
image = validation_pipeline(
|
164 |
+
None, prompt, input_image, num_inference_steps=denoise_steps, generator=generator, height=height, width=width, guidance_scale=cfg,
|
165 |
+
negative_prompt=n_prompt, conditioning_scale=alpha, eta=0.0,
|
166 |
+
).images[0]
|
167 |
+
|
168 |
+
if True: #alpha<1.0:
|
169 |
+
image = wavelet_color_fix(image, input_image)
|
170 |
+
|
171 |
+
if resize_flag:
|
172 |
+
image = image.resize((ori_width*rscale, ori_height*rscale))
|
173 |
+
except Exception as e:
|
174 |
+
print(e)
|
175 |
+
image = Image.new(mode="RGB", size=(512, 512))
|
176 |
+
|
177 |
+
# Convert and save the image as JPEG
|
178 |
+
image.save(f'result_{timestamp}.jpg', 'JPEG')
|
179 |
+
|
180 |
+
# Convert and save the image as JPEG
|
181 |
+
input_image.save(f'input_{timestamp}.jpg', 'JPEG')
|
182 |
+
|
183 |
+
return (f"input_{timestamp}.jpg", f"result_{timestamp}.jpg"), f"result_{timestamp}.jpg"
|
184 |
+
|
185 |
+
title = "Pixel-Aware Stable Diffusion for Real-ISR"
|
186 |
+
description = "Gradio Demo for PASD Real-ISR. To use it, simply upload your image, or click one of the examples to load them."
|
187 |
+
article = "<a href='https://github.com/yangxy/PASD' target='_blank'>Github Repo Pytorch</a>"
|
188 |
+
#examples=[['samples/27d38eeb2dbbe7c9.png'],['samples/629e4da70703193b.png']]
|
189 |
+
|
190 |
+
css = """
|
191 |
+
#col-container{
|
192 |
+
margin: 0 auto;
|
193 |
+
max-width: 720px;
|
194 |
+
}
|
195 |
+
#project-links{
|
196 |
+
margin: 0 0 12px !important;
|
197 |
+
column-gap: 8px;
|
198 |
+
display: flex;
|
199 |
+
justify-content: center;
|
200 |
+
flex-wrap: nowrap;
|
201 |
+
flex-direction: row;
|
202 |
+
align-items: center;
|
203 |
+
}
|
204 |
+
"""
|
205 |
+
|
206 |
+
with gr.Blocks(css=css) as demo:
|
207 |
+
with gr.Column(elem_id="col-container"):
|
208 |
+
gr.HTML(f"""
|
209 |
+
<h2 style="text-align: center;">
|
210 |
+
PASD Magnify
|
211 |
+
</h2>
|
212 |
+
<p style="text-align: center;">
|
213 |
+
Pixel-Aware Stable Diffusion for Realistic Image Super-resolution and Personalized Stylization
|
214 |
+
</p>
|
215 |
+
<p id="project-links" align="center">
|
216 |
+
<a href='https://github.com/yangxy/PASD'><img src='https://img.shields.io/badge/Project-Page-Green'></a> <a href='https://huggingface.co/papers/2308.14469'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
|
217 |
+
</p>
|
218 |
+
<p style="margin:12px auto;display: flex;justify-content: center;">
|
219 |
+
<a href="https://huggingface.co/spaces/fffiloni/PASD?duplicate=true"><img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg.svg" alt="Duplicate this Space"></a>
|
220 |
+
</p>
|
221 |
+
|
222 |
+
""")
|
223 |
+
with gr.Row():
|
224 |
+
with gr.Column():
|
225 |
+
input_image = gr.Image(type="filepath", sources=["upload"], value="PASD/samples/frog.png")
|
226 |
+
prompt_in = gr.Textbox(label="Prompt", value="Frog")
|
227 |
+
with gr.Accordion(label="Advanced settings", open=False):
|
228 |
+
added_prompt = gr.Textbox(label="Added Prompt", value='clean, high-resolution, 8k, best quality, masterpiece')
|
229 |
+
neg_prompt = gr.Textbox(label="Negative Prompt",value='dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
|
230 |
+
denoise_steps = gr.Slider(label="Denoise Steps", minimum=10, maximum=50, value=20, step=1)
|
231 |
+
upsample_scale = gr.Slider(label="Upsample Scale", minimum=1, maximum=4, value=2, step=1)
|
232 |
+
condition_scale = gr.Slider(label="Conditioning Scale", minimum=0.5, maximum=1.5, value=1.1, step=0.1)
|
233 |
+
classifier_free_guidance = gr.Slider(label="Classier-free Guidance", minimum=0.1, maximum=10.0, value=7.5, step=0.1)
|
234 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
235 |
+
submit_btn = gr.Button("Submit")
|
236 |
+
with gr.Column():
|
237 |
+
b_a_slider = ImageSlider(label="B/A result", position=0.5)
|
238 |
+
file_output = gr.File(label="Downloadable image result")
|
239 |
+
|
240 |
+
submit_btn.click(
|
241 |
+
fn = inference,
|
242 |
+
inputs = [
|
243 |
+
input_image, prompt_in,
|
244 |
+
added_prompt, neg_prompt,
|
245 |
+
denoise_steps,
|
246 |
+
upsample_scale, condition_scale,
|
247 |
+
classifier_free_guidance, seed
|
248 |
+
],
|
249 |
+
outputs = [
|
250 |
+
b_a_slider,
|
251 |
+
file_output
|
252 |
+
]
|
253 |
+
)
|
254 |
+
demo.queue(max_size=20).launch()
|