|
import time |
|
import cv2 |
|
import numpy as np |
|
import onnxruntime |
|
|
|
from utils import draw_detections |
|
|
|
|
|
class YOLOv10: |
|
def __init__(self, path): |
|
|
|
|
|
self.initialize_model(path) |
|
|
|
def __call__(self, image): |
|
return self.detect_objects(image) |
|
|
|
def initialize_model(self, path): |
|
self.session = onnxruntime.InferenceSession( |
|
path, providers=onnxruntime.get_available_providers() |
|
) |
|
|
|
self.get_input_details() |
|
self.get_output_details() |
|
|
|
def detect_objects(self, image, conf_threshold=0.3): |
|
input_tensor = self.prepare_input(image) |
|
|
|
|
|
new_image = self.inference(image, input_tensor, conf_threshold) |
|
|
|
return new_image |
|
|
|
def prepare_input(self, image): |
|
self.img_height, self.img_width = image.shape[:2] |
|
|
|
input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
|
|
|
|
input_img = cv2.resize(input_img, (self.input_width, self.input_height)) |
|
|
|
|
|
input_img = input_img / 255.0 |
|
input_img = input_img.transpose(2, 0, 1) |
|
input_tensor = input_img[np.newaxis, :, :, :].astype(np.float32) |
|
|
|
return input_tensor |
|
|
|
def inference(self, image, input_tensor, conf_threshold=0.3): |
|
start = time.perf_counter() |
|
outputs = self.session.run( |
|
self.output_names, {self.input_names[0]: input_tensor} |
|
) |
|
|
|
print(f"Inference time: {(time.perf_counter() - start)*1000:.2f} ms") |
|
boxes, scores, class_ids, = self.process_output(outputs, conf_threshold) |
|
return self.draw_detections(image, boxes, scores, class_ids) |
|
|
|
def process_output(self, output, conf_threshold=0.3): |
|
predictions = np.squeeze(output[0]) |
|
|
|
|
|
scores = predictions[:, 4] |
|
predictions = predictions[scores > conf_threshold, :] |
|
scores = scores[scores > conf_threshold] |
|
|
|
if len(scores) == 0: |
|
return [], [], [] |
|
|
|
|
|
class_ids = predictions[:, 5].astype(int) |
|
|
|
|
|
boxes = self.extract_boxes(predictions) |
|
|
|
return boxes, scores, class_ids |
|
|
|
def extract_boxes(self, predictions): |
|
|
|
boxes = predictions[:, :4] |
|
|
|
|
|
boxes = self.rescale_boxes(boxes) |
|
|
|
|
|
|
|
|
|
return boxes |
|
|
|
def rescale_boxes(self, boxes): |
|
|
|
input_shape = np.array( |
|
[self.input_width, self.input_height, self.input_width, self.input_height] |
|
) |
|
boxes = np.divide(boxes, input_shape, dtype=np.float32) |
|
boxes *= np.array( |
|
[self.img_width, self.img_height, self.img_width, self.img_height] |
|
) |
|
return boxes |
|
|
|
def draw_detections(self, image, boxes, scores, class_ids, draw_scores=True, mask_alpha=0.4): |
|
return draw_detections( |
|
image, boxes, scores, class_ids, mask_alpha |
|
) |
|
|
|
def get_input_details(self): |
|
model_inputs = self.session.get_inputs() |
|
self.input_names = [model_inputs[i].name for i in range(len(model_inputs))] |
|
|
|
self.input_shape = model_inputs[0].shape |
|
self.input_height = self.input_shape[2] |
|
self.input_width = self.input_shape[3] |
|
|
|
def get_output_details(self): |
|
model_outputs = self.session.get_outputs() |
|
self.output_names = [model_outputs[i].name for i in range(len(model_outputs))] |
|
|
|
|
|
if __name__ == "__main__": |
|
import requests |
|
import tempfile |
|
from huggingface_hub import hf_hub_download |
|
|
|
model_file = hf_hub_download( |
|
repo_id="onnx-community/yolov10s", filename="onnx/model.onnx" |
|
) |
|
|
|
yolov8_detector = YOLOv10(model_file) |
|
|
|
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as f: |
|
f.write( |
|
requests.get( |
|
"https://live.staticflickr.com/13/19041780_d6fd803de0_3k.jpg" |
|
).content |
|
) |
|
f.seek(0) |
|
img = cv2.imread(f.name) |
|
|
|
|
|
combined_image = yolov8_detector.detect_objects(img) |
|
|
|
|
|
|
|
cv2.namedWindow("Output", cv2.WINDOW_NORMAL) |
|
cv2.imshow("Output", combined_image) |
|
cv2.waitKey(0) |