iamramzan commited on
Commit
2bc270a
·
verified ·
1 Parent(s): 57bdea5

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +96 -0
app.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import necessary libraries
2
+ import gradio as gr # Gradio for creating the web interface
3
+ import cv2 # OpenCV for image processing
4
+ from huggingface_hub import hf_hub_download # Download models from Hugging Face Hub
5
+ from gradio_webrtc import WebRTC # WebRTC integration for streaming webcam feeds in Gradio
6
+ from twilio.rest import Client # Twilio client for managing ICE servers for WebRTC
7
+ import os # OS module for environment variable access
8
+ from inference import YOLOv10 # Custom YOLOv10 inference class
9
+
10
+ # Download YOLOv10 model file from Hugging Face Hub
11
+ model_file = hf_hub_download(
12
+ repo_id="onnx-community/yolov10n", # Repository containing the YOLOv10 model
13
+ filename="onnx/model.onnx" # Model file to download
14
+ )
15
+
16
+ # Initialize the YOLOv10 model
17
+ model = YOLOv10(model_file)
18
+
19
+ # Retrieve Twilio account credentials from environment variables
20
+ account_sid = os.environ.get("TWILIO_ACCOUNT_SID") # Twilio Account SID
21
+ auth_token = os.environ.get("TWILIO_AUTH_TOKEN") # Twilio Auth Token
22
+
23
+ # Check if Twilio credentials are available
24
+ if account_sid and auth_token:
25
+ # Initialize Twilio client with credentials
26
+ client = Client(account_sid, auth_token)
27
+
28
+ # Create a Twilio token for ICE server configuration
29
+ token = client.tokens.create()
30
+
31
+ # Configure WebRTC to use Twilio ICE servers for better connection reliability
32
+ rtc_configuration = {
33
+ "iceServers": token.ice_servers, # Use Twilio ICE servers
34
+ "iceTransportPolicy": "relay", # Relay policy to improve NAT traversal
35
+ }
36
+ else:
37
+ # Use default WebRTC configuration if Twilio credentials are not available
38
+ rtc_configuration = None
39
+
40
+ # Function to perform object detection
41
+ def detection(image, conf_threshold=0.3):
42
+ # Resize the input image to match the model's expected dimensions
43
+ image = cv2.resize(image, (model.input_width, model.input_height))
44
+ # Perform object detection and return the processed image
45
+ new_image = model.detect_objects(image, conf_threshold)
46
+ return cv2.resize(new_image, (500, 500)) # Resize output image for display
47
+
48
+ # Define custom CSS for Gradio interface layout
49
+ css = """.my-group {max-width: 600px !important; max-height: 600 !important;}
50
+ .my-column {display: flex !important; justify-content: center !important; align-items: center !important};"""
51
+
52
+ # Create a Gradio interface with custom blocks
53
+ with gr.Blocks(css=css) as demo:
54
+ # Add a title to the Gradio interface
55
+ gr.HTML(
56
+ """
57
+ <h1 style='text-align: center'>
58
+ YOLOv10 Webcam Stream
59
+ </h1>
60
+ """
61
+ )
62
+ # Add links to the arXiv paper and GitHub repository for YOLOv10
63
+ gr.HTML(
64
+ """
65
+ <h3 style='text-align: center'>
66
+ <a href='https://arxiv.org/abs/2405.14458' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a>
67
+ </h3>
68
+ """
69
+ )
70
+ # Define a column layout for the interface
71
+ with gr.Column(elem_classes=["my-column"]):
72
+ with gr.Group(elem_classes=["my-group"]):
73
+ # Add a WebRTC component for webcam streaming
74
+ image = WebRTC(label="Stream", rtc_configuration=rtc_configuration)
75
+ # Add a slider to adjust the confidence threshold for object detection
76
+ conf_threshold = gr.Slider(
77
+ label="Confidence Threshold", # Label for the slider
78
+ minimum=0.0, # Minimum slider value
79
+ maximum=1.0, # Maximum slider value
80
+ step=0.05, # Step size for slider
81
+ value=0.30, # Default slider value
82
+ )
83
+
84
+ # Stream webcam frames through the detection function
85
+ image.stream(
86
+ fn=detection, # Detection function to process frames
87
+ inputs=[image, conf_threshold], # Inputs: webcam stream and confidence threshold
88
+ outputs=[image], # Outputs: processed frames
89
+ time_limit=10 # Limit each detection to 10 seconds
90
+ )
91
+
92
+ # Launch the Gradio app when the script is run directly
93
+ if __name__ == "__main__":
94
+ demo.launch()
95
+
96
+