iamramzan commited on
Commit
40c8fbd
·
verified ·
1 Parent(s): 4e5a216

Create utils.py (#2)

Browse files

- Create utils.py (fc8b6c1e1e92f944633d1292adc8f46192ab2e2c)

Files changed (1) hide show
  1. utils.py +237 -0
utils.py ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import cv2
3
+
4
+ class_names = [
5
+ "person",
6
+ "bicycle",
7
+ "car",
8
+ "motorcycle",
9
+ "airplane",
10
+ "bus",
11
+ "train",
12
+ "truck",
13
+ "boat",
14
+ "traffic light",
15
+ "fire hydrant",
16
+ "stop sign",
17
+ "parking meter",
18
+ "bench",
19
+ "bird",
20
+ "cat",
21
+ "dog",
22
+ "horse",
23
+ "sheep",
24
+ "cow",
25
+ "elephant",
26
+ "bear",
27
+ "zebra",
28
+ "giraffe",
29
+ "backpack",
30
+ "umbrella",
31
+ "handbag",
32
+ "tie",
33
+ "suitcase",
34
+ "frisbee",
35
+ "skis",
36
+ "snowboard",
37
+ "sports ball",
38
+ "kite",
39
+ "baseball bat",
40
+ "baseball glove",
41
+ "skateboard",
42
+ "surfboard",
43
+ "tennis racket",
44
+ "bottle",
45
+ "wine glass",
46
+ "cup",
47
+ "fork",
48
+ "knife",
49
+ "spoon",
50
+ "bowl",
51
+ "banana",
52
+ "apple",
53
+ "sandwich",
54
+ "orange",
55
+ "broccoli",
56
+ "carrot",
57
+ "hot dog",
58
+ "pizza",
59
+ "donut",
60
+ "cake",
61
+ "chair",
62
+ "couch",
63
+ "potted plant",
64
+ "bed",
65
+ "dining table",
66
+ "toilet",
67
+ "tv",
68
+ "laptop",
69
+ "mouse",
70
+ "remote",
71
+ "keyboard",
72
+ "cell phone",
73
+ "microwave",
74
+ "oven",
75
+ "toaster",
76
+ "sink",
77
+ "refrigerator",
78
+ "book",
79
+ "clock",
80
+ "vase",
81
+ "scissors",
82
+ "teddy bear",
83
+ "hair drier",
84
+ "toothbrush",
85
+ ]
86
+
87
+ # Create a list of colors for each class where each color is a tuple of 3 integer values
88
+ rng = np.random.default_rng(3)
89
+ colors = rng.uniform(0, 255, size=(len(class_names), 3))
90
+
91
+
92
+ def nms(boxes, scores, iou_threshold):
93
+ # Sort by score
94
+ sorted_indices = np.argsort(scores)[::-1]
95
+
96
+ keep_boxes = []
97
+ while sorted_indices.size > 0:
98
+ # Pick the last box
99
+ box_id = sorted_indices[0]
100
+ keep_boxes.append(box_id)
101
+
102
+ # Compute IoU of the picked box with the rest
103
+ ious = compute_iou(boxes[box_id, :], boxes[sorted_indices[1:], :])
104
+
105
+ # Remove boxes with IoU over the threshold
106
+ keep_indices = np.where(ious < iou_threshold)[0]
107
+
108
+ # print(keep_indices.shape, sorted_indices.shape)
109
+ sorted_indices = sorted_indices[keep_indices + 1]
110
+
111
+ return keep_boxes
112
+
113
+
114
+ def multiclass_nms(boxes, scores, class_ids, iou_threshold):
115
+ unique_class_ids = np.unique(class_ids)
116
+
117
+ keep_boxes = []
118
+ for class_id in unique_class_ids:
119
+ class_indices = np.where(class_ids == class_id)[0]
120
+ class_boxes = boxes[class_indices, :]
121
+ class_scores = scores[class_indices]
122
+
123
+ class_keep_boxes = nms(class_boxes, class_scores, iou_threshold)
124
+ keep_boxes.extend(class_indices[class_keep_boxes])
125
+
126
+ return keep_boxes
127
+
128
+
129
+ def compute_iou(box, boxes):
130
+ # Compute xmin, ymin, xmax, ymax for both boxes
131
+ xmin = np.maximum(box[0], boxes[:, 0])
132
+ ymin = np.maximum(box[1], boxes[:, 1])
133
+ xmax = np.minimum(box[2], boxes[:, 2])
134
+ ymax = np.minimum(box[3], boxes[:, 3])
135
+
136
+ # Compute intersection area
137
+ intersection_area = np.maximum(0, xmax - xmin) * np.maximum(0, ymax - ymin)
138
+
139
+ # Compute union area
140
+ box_area = (box[2] - box[0]) * (box[3] - box[1])
141
+ boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
142
+ union_area = box_area + boxes_area - intersection_area
143
+
144
+ # Compute IoU
145
+ iou = intersection_area / union_area
146
+
147
+ return iou
148
+
149
+
150
+ def xywh2xyxy(x):
151
+ # Convert bounding box (x, y, w, h) to bounding box (x1, y1, x2, y2)
152
+ y = np.copy(x)
153
+ y[..., 0] = x[..., 0] - x[..., 2] / 2
154
+ y[..., 1] = x[..., 1] - x[..., 3] / 2
155
+ y[..., 2] = x[..., 0] + x[..., 2] / 2
156
+ y[..., 3] = x[..., 1] + x[..., 3] / 2
157
+ return y
158
+
159
+
160
+ def draw_detections(image, boxes, scores, class_ids, mask_alpha=0.3):
161
+ det_img = image.copy()
162
+
163
+ img_height, img_width = image.shape[:2]
164
+ font_size = min([img_height, img_width]) * 0.0006
165
+ text_thickness = int(min([img_height, img_width]) * 0.001)
166
+
167
+ #det_img = draw_masks(det_img, boxes, class_ids, mask_alpha)
168
+
169
+ # Draw bounding boxes and labels of detections
170
+ for class_id, box, score in zip(class_ids, boxes, scores):
171
+ color = colors[class_id]
172
+
173
+ draw_box(det_img, box, color)
174
+
175
+ label = class_names[class_id]
176
+ caption = f"{label} {int(score * 100)}%"
177
+ draw_text(det_img, caption, box, color, font_size, text_thickness)
178
+
179
+ return det_img
180
+
181
+
182
+ def draw_box(
183
+ image: np.ndarray,
184
+ box: np.ndarray,
185
+ color: tuple[int, int, int] = (0, 0, 255),
186
+ thickness: int = 2,
187
+ ) -> np.ndarray:
188
+ x1, y1, x2, y2 = box.astype(int)
189
+ return cv2.rectangle(image, (x1, y1), (x2, y2), color, thickness)
190
+
191
+
192
+ def draw_text(
193
+ image: np.ndarray,
194
+ text: str,
195
+ box: np.ndarray,
196
+ color: tuple[int, int, int] = (0, 0, 255),
197
+ font_size: float = 0.001,
198
+ text_thickness: int = 2,
199
+ ) -> np.ndarray:
200
+ x1, y1, x2, y2 = box.astype(int)
201
+ (tw, th), _ = cv2.getTextSize(
202
+ text=text,
203
+ fontFace=cv2.FONT_HERSHEY_SIMPLEX,
204
+ fontScale=font_size,
205
+ thickness=text_thickness,
206
+ )
207
+ th = int(th * 1.2)
208
+
209
+ cv2.rectangle(image, (x1, y1), (x1 + tw, y1 - th), color, -1)
210
+
211
+ return cv2.putText(
212
+ image,
213
+ text,
214
+ (x1, y1),
215
+ cv2.FONT_HERSHEY_SIMPLEX,
216
+ font_size,
217
+ (255, 255, 255),
218
+ text_thickness,
219
+ cv2.LINE_AA,
220
+ )
221
+
222
+
223
+ def draw_masks(
224
+ image: np.ndarray, boxes: np.ndarray, classes: np.ndarray, mask_alpha: float = 0.3
225
+ ) -> np.ndarray:
226
+ mask_img = image.copy()
227
+
228
+ # Draw bounding boxes and labels of detections
229
+ for box, class_id in zip(boxes, classes):
230
+ color = colors[class_id]
231
+
232
+ x1, y1, x2, y2 = box.astype(int)
233
+
234
+ # Draw fill rectangle in mask image
235
+ cv2.rectangle(mask_img, (x1, y1), (x2, y2), color, -1)
236
+
237
+ return cv2.addWeighted(mask_img, mask_alpha, image, 1 - mask_alpha, 0)