Spaces:
Runtime error
Runtime error
import streamlit as st | |
from markdown import markdown | |
from annotated_text import annotation | |
import logging | |
from haystack.document_stores import InMemoryDocumentStore | |
from haystack.nodes import TfidfRetriever | |
from haystack.pipelines import ExtractiveQAPipeline | |
from haystack.nodes import FARMReader | |
import time | |
import joblib | |
from random import choice | |
def create_pipeline(): | |
docs = joblib.load('docs.joblib') | |
document_store = InMemoryDocumentStore() | |
document_store.write_documents(docs) | |
retriever = TfidfRetriever(document_store) | |
reader = FARMReader(model_name_or_path="ixa-ehu/SciBERT-SQuAD-QuAC") | |
pipeline = ExtractiveQAPipeline(reader, retriever) | |
return pipeline | |
pipeline = create_pipeline() | |
def set_state_if_absent(key, value): | |
if key not in st.session_state: | |
st.session_state[key] = value | |
queries = ['Methods of orthodontics', | |
'What are some effects of climate change?', | |
'Factors of global warming', | |
'Effects of Covid-19 Virus on the economy', | |
'Applications of AI and deep learning', | |
'Sexually transmitted diseases and their prevalence', | |
'Cryptography and cryptology'] | |
set_state_if_absent("question", choice(queries)) | |
set_state_if_absent("results", None) | |
def reset_results(*args): | |
st.session_state.results = None | |
st.markdown('''# Welcome to **SRM RP explorer**! | |
This QA demo uses a [Haystack Extractive QA Pipeline](https://haystack.deepset.ai/components/ready-made-pipelines#extractiveqapipeline) with | |
an [InMemoryDocumentStore](https://haystack.deepset.ai/components/document-store) which contains abstracts of 17k+ research papers associated with SRM university.''') | |
def change_query(*args): | |
st.session_state.question = choice(queries) | |
query = st.text_input('Enter a query to get started:', value=st.session_state.question, max_chars=100, on_change=reset_results) | |
st.button('Random Question', on_click=change_query) | |
def ask_question(query): | |
start = time.time() | |
prediction = pipeline.run(query=query, params={"Retriever": {"top_k": 6}, "Reader": {"top_k": 3}}) | |
st.write('Time taken: %s s' % round(time.time()-start, 2)) | |
results = [] | |
for answer in prediction["answers"]: | |
answer = answer.to_dict() | |
if answer["answer"]: | |
results.append( | |
{ | |
"title":answer["meta"]["name"], | |
"link":answer["meta"]["link"], | |
"context": "..." + answer["context"] + "...", | |
"answer": answer["answer"], | |
"score": round(answer["score"] * 100, 2), | |
"offset_start_in_doc": answer["offsets_in_document"][0]["start"], | |
} | |
) | |
else: | |
results.append( | |
{ | |
"title":None, | |
"link":None, | |
"context": None, | |
"answer": None, | |
"score": round(answer["score"] * 100, 2), | |
} | |
) | |
return results | |
if query: | |
with st.spinner("π Performing semantic search on abstracts..."): | |
try: | |
msg = 'Asked ' + query | |
logging.info(msg) | |
st.session_state.results = ask_question(query) | |
except Exception as e: | |
logging.exception(e) | |
if st.session_state.results: | |
st.write('## Top Results') | |
for count, result in enumerate(st.session_state.results): | |
if result["answer"]: | |
answer, context = result["answer"], result["context"] | |
start_idx = context.find(answer) | |
end_idx = start_idx + len(answer) | |
st.markdown(f"### [{result['title']}]({result['link']})") | |
st.write( | |
markdown(context[:start_idx] + str(annotation(body=answer, label="RELEVANT", background="#67a17a", color='#ffffff')) + context[end_idx:]), | |
unsafe_allow_html=True, | |
) | |
st.markdown(f"**Relevance:** {result['score']}") | |
else: | |
st.info( | |
"π€ Haystack is unsure whether any of the documents contain an answer to your question. Try to reformulate it!" | |
) | |