import streamlit as st from markdown import markdown from annotated_text import annotation import logging from haystack.document_stores import InMemoryDocumentStore from haystack.nodes import TfidfRetriever from haystack.pipelines import ExtractiveQAPipeline from haystack.nodes import FARMReader import time import joblib from random import choice @st.cache(hash_funcs={"builtins.SwigPyObject": lambda _: None},allow_output_mutation=True) def create_pipeline(): docs = joblib.load('docs.joblib') document_store = InMemoryDocumentStore() document_store.write_documents(docs) retriever = TfidfRetriever(document_store) reader = FARMReader(model_name_or_path="ixa-ehu/SciBERT-SQuAD-QuAC") pipeline = ExtractiveQAPipeline(reader, retriever) return pipeline pipeline = create_pipeline() def set_state_if_absent(key, value): if key not in st.session_state: st.session_state[key] = value queries = ['Methods of orthodontics', 'What are some effects of climate change?', 'Factors of global warming', 'Effects of Covid-19 Virus on the economy', 'Applications of AI and deep learning', 'Sexually transmitted diseases and their prevalence', 'Cryptography and cryptology'] set_state_if_absent("question", choice(queries)) set_state_if_absent("results", None) def reset_results(*args): st.session_state.results = None st.markdown('''# Welcome to **SRM RP explorer**! This QA demo uses a [Haystack Extractive QA Pipeline](https://haystack.deepset.ai/components/ready-made-pipelines#extractiveqapipeline) with an [InMemoryDocumentStore](https://haystack.deepset.ai/components/document-store) which contains abstracts of 17k+ research papers associated with SRM university.''') def change_query(*args): st.session_state.question = choice(queries) query = st.text_input('Enter a query to get started:', value=st.session_state.question, max_chars=100, on_change=reset_results) st.button('Random Question', on_click=change_query) def ask_question(query): start = time.time() prediction = pipeline.run(query=query, params={"Retriever": {"top_k": 6}, "Reader": {"top_k": 3}}) st.write('Time taken: %s s' % round(time.time()-start, 2)) results = [] for answer in prediction["answers"]: answer = answer.to_dict() if answer["answer"]: results.append( { "title":answer["meta"]["name"], "link":answer["meta"]["link"], "context": "..." + answer["context"] + "...", "answer": answer["answer"], "score": round(answer["score"] * 100, 2), "offset_start_in_doc": answer["offsets_in_document"][0]["start"], } ) else: results.append( { "title":None, "link":None, "context": None, "answer": None, "score": round(answer["score"] * 100, 2), } ) return results if query: with st.spinner("👑    Performing semantic search on abstracts..."): try: msg = 'Asked ' + query logging.info(msg) st.session_state.results = ask_question(query) except Exception as e: logging.exception(e) if st.session_state.results: st.write('## Top Results') for count, result in enumerate(st.session_state.results): if result["answer"]: answer, context = result["answer"], result["context"] start_idx = context.find(answer) end_idx = start_idx + len(answer) st.markdown(f"### [{result['title']}]({result['link']})") st.write( markdown(context[:start_idx] + str(annotation(body=answer, label="RELEVANT", background="#67a17a", color='#ffffff')) + context[end_idx:]), unsafe_allow_html=True, ) st.markdown(f"**Relevance:** {result['score']}") else: st.info( "🤔    Haystack is unsure whether any of the documents contain an answer to your question. Try to reformulate it!" )