File size: 5,288 Bytes
fa14840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import sys
import cv2
import time
import numpy as np
import onnxruntime
print(onnxruntime.get_device())

lane_colors = [(249,65,68),(243,114,44),(248,150,30),(249,132,74),(249,199,79),(144,190,109),(77, 144, 142),(39, 125, 161)]
log_space = np.logspace(0,2, 50, base=1/10, endpoint=True)

class LSTR():

    def __init__(self, model_path):

        # Initialize model
        self.model = self.initialize_model(model_path)

    def __call__(self, image):

        return self.detect_lanes(image)

    def initialize_model(self, model_path):

        opts = onnxruntime.SessionOptions()
        opts.intra_op_num_threads = 16
        self.session = onnxruntime.InferenceSession(model_path,sess_options=opts)

        # Get model info
        self.getModel_input_details()
        self.getModel_output_details()

    def detect_lanes(self, image):

        input_tensor, mask_tensor = self.prepare_inputs(image)

        outputs = self.inference(input_tensor, mask_tensor)
        
        detected_lanes, good_lanes = self.process_output(outputs)

        return detected_lanes, good_lanes

    def prepare_inputs(self, img):

        self.img_height, self.img_width, self.img_channels = img.shape
        
        # Transform the image for inference
        # img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img = cv2.resize(img,(self.input_width, self.input_height))

        # Scale input pixel values to -1 to 1
        mean=[0.485, 0.456, 0.406]
        std=[0.229, 0.224, 0.225]
        
        img = ((img/ 255.0 - mean) / std)
        # img = img/ 255.0

        img = img.transpose(2, 0, 1)
        input_tensor = img[np.newaxis,:,:,:].astype(np.float32)

        mask_tensor = np.zeros((1, 1, self.input_height, self.input_width), dtype=np.float32)

        return input_tensor, mask_tensor

    def inference(self, input_tensor, mask_tensor):
        start = time.time()
        outputs = self.session.run(self.output_names, {self.rgb_input_name: input_tensor, 
                                                       self.mask_input_name: mask_tensor})
        # print(time.time() - start)
        return outputs

    @staticmethod
    def softmax(x):
        """Compute softmax values for each sets of scores in x."""
        e_x = np.exp(x - np.max(x))
        return e_x / e_x.sum(axis=-1).T

    def process_output(self, outputs):  

        pred_logits = outputs[0]
        pred_curves = outputs[1]

        # Filter good lanes based on the probability
        prob = self.softmax(pred_logits)
        good_detections = np.where(np.argmax(prob,axis=-1)==1)

        pred_logits = pred_logits[good_detections]
        pred_curves = pred_curves[good_detections]

        lanes = []
        for lane_data in pred_curves:
            bounds = lane_data[:2]
            k_2, f_2, m_2, n_1, b_2, b_3 = lane_data[2:]

            # Calculate the points for the lane
            y_norm = bounds[0]+log_space*(bounds[1]-bounds[0])
            x_norm = (k_2 / (y_norm - f_2) ** 2 + m_2 / (y_norm - f_2) + n_1 + b_2 * y_norm - b_3)
            lane_points = np.vstack((x_norm*self.img_width, y_norm*self.img_height)).astype(int)
            
            lanes.append(lane_points)    

        self.lanes = lanes
        self.good_lanes = good_detections[1]

        return lanes, self.good_lanes

    def getModel_input_details(self):

        model_inputs = self.session.get_inputs()
        self.rgb_input_name = self.session.get_inputs()[0].name
        self.mask_input_name = self.session.get_inputs()[1].name

        self.input_shape = self.session.get_inputs()[0].shape
        self.input_height = self.input_shape[2]
        self.input_width = self.input_shape[3]

    def getModel_output_details(self):

        model_outputs = self.session.get_outputs()
        self.output_names = [model_outputs[i].name for i in range(len(model_outputs))]
        # print(self.output_names)

    def draw_lanes(self,input_img):

        # Write the detected line points in the image
        visualization_img = input_img.copy()

        # Draw a mask for the current lane
        right_lane = np.where(self.good_lanes==0)[0]
        left_lane = np.where(self.good_lanes==5)[0]

        if(len(left_lane) and len(right_lane)):
            
            lane_segment_img = visualization_img.copy()

            points = np.vstack((self.lanes[left_lane[0]].T,
                                np.flipud(self.lanes[right_lane[0]].T)))
            cv2.fillConvexPoly(lane_segment_img, points, color =(0,191,255))
            visualization_img = cv2.addWeighted(visualization_img, 0.7, lane_segment_img, 0.3, 0)

        for lane_num,lane_points in zip(self.good_lanes, self.lanes):
            for lane_point in lane_points.T:
                cv2.circle(visualization_img, (lane_point[0],lane_point[1]), 3, lane_colors[lane_num], -1)

        return visualization_img

if __name__ == '__main__':
    model_path='../models/model_float32.onnx'
    lane_detector = LSTR(model_path)

    img = cv2.imread("../dog_road.jpg")
    detected_lanes, lane_ids = lane_detector(img)
    print(lane_ids)

    lane_img = lane_detector.draw_lanes(img)
    cv2.namedWindow("Detected lanes", cv2.WINDOW_NORMAL)
    cv2.imshow("Detected lanes",lane_img)
    cv2.imwrite("out.jpg", lane_img)
    cv2.waitKey(0)