File size: 14,120 Bytes
b585c7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
import ast
import os
import time
import uuid
from collections import deque
from log import logger
def decode(x, encoding_name="cl100k_base"):
try:
import tiktoken
encoding = tiktoken.get_encoding(encoding_name)
return encoding.decode(x)
except ImportError:
return ''
def encode(x, encoding_name="cl100k_base"):
try:
import tiktoken
encoding = tiktoken.get_encoding(encoding_name)
return encoding.encode(x, disallowed_special=())
except ImportError:
return []
def count_tokens(x, encoding_name="cl100k_base"):
try:
import tiktoken
encoding = tiktoken.get_encoding(encoding_name)
return len(encoding.encode(x, disallowed_special=()))
except ImportError:
return 0
def get_gradio_client():
try:
from gradio_utils.grclient import GradioClient as Client
concurrent_client = True
except ImportError:
print("Using slower gradio API, for speed ensure gradio_utils/grclient.py exists.")
from gradio_client import Client
concurrent_client = False
gradio_prefix = os.getenv('GRADIO_PREFIX', 'http')
gradio_host = os.getenv('GRADIO_SERVER_HOST', 'localhost')
gradio_port = int(os.getenv('GRADIO_SERVER_PORT', '7860'))
gradio_url = f'{gradio_prefix}://{gradio_host}:{gradio_port}'
print("Getting gradio client at %s" % gradio_url, flush=True)
client = Client(gradio_url)
if concurrent_client:
client.setup()
return client
gradio_client = get_gradio_client()
def get_client():
# concurrent gradio client
if hasattr(gradio_client, 'clone'):
client = gradio_client.clone()
else:
print(
"re-get to ensure concurrency ok, slower if API is large, for speed ensure gradio_utils/grclient.py exists.")
client = get_gradio_client()
return client
def get_response(instruction, gen_kwargs, verbose=False, chunk_response=True, stream_output=False):
import ast
kwargs = dict(instruction=instruction)
if os.getenv('GRADIO_H2OGPT_H2OGPT_KEY'):
kwargs.update(dict(h2ogpt_key=os.getenv('GRADIO_H2OGPT_H2OGPT_KEY')))
# max_tokens=16 for text completion by default
gen_kwargs['max_new_tokens'] = gen_kwargs.pop('max_new_tokens', gen_kwargs.pop('max_tokens', 256))
gen_kwargs['visible_models'] = gen_kwargs.pop('visible_models', gen_kwargs.pop('model', 0))
# be more like OpenAI, only temperature, not do_sample, to control
gen_kwargs['temperature'] = gen_kwargs.pop('temperature', 0.0) # unlike OpenAI, default to not random
# https://platform.openai.com/docs/api-reference/chat/create
if gen_kwargs['temperature'] > 0.0:
# let temperature control sampling
gen_kwargs['do_sample'] = True
elif gen_kwargs['top_p'] != 1.0:
# let top_p control sampling
gen_kwargs['do_sample'] = True
if gen_kwargs.get('top_k') == 1 and gen_kwargs.get('temperature') == 0.0:
logger.warning("Sampling with top_k=1 has no effect if top_k=1 and temperature=0")
else:
# no sampling, make consistent
gen_kwargs['top_p'] = 1.0
gen_kwargs['top_k'] = 1
if gen_kwargs.get('repetition_penalty', 1) == 1 and gen_kwargs.get('presence_penalty', 0.0) != 0.0:
# then user using presence_penalty, convert to repetition_penalty for h2oGPT
# presence_penalty=(repetition_penalty - 1.0) * 2.0 + 0.0, # so good default
gen_kwargs['repetition_penalty'] = 0.5 * (gen_kwargs['presence_penalty'] - 0.0) + 1.0
kwargs.update(**gen_kwargs)
# concurrent gradio client
client = get_client()
if stream_output:
job = client.submit(str(dict(kwargs)), api_name='/submit_nochat_api')
job_outputs_num = 0
last_response = ''
while not job.done():
outputs_list = job.communicator.job.outputs
job_outputs_num_new = len(outputs_list[job_outputs_num:])
for num in range(job_outputs_num_new):
res = outputs_list[job_outputs_num + num]
res = ast.literal_eval(res)
if verbose:
logger.info('Stream %d: %s\n\n %s\n\n' % (num, res['response'], res))
else:
logger.info('Stream %d' % (job_outputs_num + num))
response = res['response']
chunk = response[len(last_response):]
if chunk_response:
if chunk:
yield chunk
else:
yield response
last_response = response
job_outputs_num += job_outputs_num_new
time.sleep(0.01)
outputs_list = job.outputs()
job_outputs_num_new = len(outputs_list[job_outputs_num:])
res = {}
for num in range(job_outputs_num_new):
res = outputs_list[job_outputs_num + num]
res = ast.literal_eval(res)
if verbose:
logger.info('Final Stream %d: %s\n\n%s\n\n' % (num, res['response'], res))
else:
logger.info('Final Stream %d' % (job_outputs_num + num))
response = res['response']
chunk = response[len(last_response):]
if chunk_response:
if chunk:
yield chunk
else:
yield response
last_response = response
job_outputs_num += job_outputs_num_new
logger.info("total job_outputs_num=%d" % job_outputs_num)
else:
res = client.predict(str(dict(kwargs)), api_name='/submit_nochat_api')
res = ast.literal_eval(res)
yield res['response']
def convert_messages_to_structure(messages):
"""
Convert a list of messages with roles and content into a structured format.
Parameters:
messages (list of dicts): A list where each dict contains 'role' and 'content' keys.
Variables:
structure: dict: A dictionary with 'instruction', 'system_message', and 'history' keys.
Returns
"""
structure = {
"instruction": None,
"system_message": None,
"history": []
}
for message in messages:
role = message.get("role")
assert role, "Missing role"
content = message.get("content")
assert content, "Missing content"
if role == "function":
raise NotImplementedError("role: function not implemented")
if role == "user" and structure["instruction"] is None:
# The first user message is considered as the instruction
structure["instruction"] = content
elif role == "system" and structure["system_message"] is None:
# The first system message is considered as the system message
structure["system_message"] = content
elif role == "user" or role == "assistant":
# All subsequent user and assistant messages are part of the history
if structure["history"] and structure["history"][-1][0] == "user" and role == "assistant":
# Pair the assistant response with the last user message
structure["history"][-1] = (structure["history"][-1][1], content)
else:
# Add a new pair to the history
structure["history"].append(("user", content) if role == "user" else ("assistant", content))
return structure['instruction'], structure['system_message'], structure['history']
def chat_completion_action(body: dict, stream_output=False) -> dict:
messages = body.get('messages', [])
object_type = 'chat.completions' if not stream_output else 'chat.completions.chunk'
created_time = int(time.time())
req_id = "chat_cmpl_id-%s" % str(uuid.uuid4())
resp_list = 'choices'
gen_kwargs = body
instruction, system_message, history = convert_messages_to_structure(messages)
gen_kwargs.update({
'system_prompt': system_message,
'chat_conversation': history,
'stream_output': stream_output
})
def chat_streaming_chunk(content):
# begin streaming
chunk = {
"id": req_id,
"object": object_type,
"created": created_time,
"model": '',
resp_list: [{
"index": 0,
"finish_reason": None,
"message": {'role': 'assistant', 'content': content},
"delta": {'role': 'assistant', 'content': content},
}],
}
return chunk
if stream_output:
yield chat_streaming_chunk('')
token_count = count_tokens(instruction)
generator = get_response(instruction, gen_kwargs, chunk_response=stream_output,
stream_output=stream_output)
answer = ''
for chunk in generator:
if stream_output:
answer += chunk
chat_chunk = chat_streaming_chunk(chunk)
yield chat_chunk
else:
answer = chunk
completion_token_count = count_tokens(answer)
stop_reason = "stop"
if stream_output:
chunk = chat_streaming_chunk('')
chunk[resp_list][0]['finish_reason'] = stop_reason
chunk['usage'] = {
"prompt_tokens": token_count,
"completion_tokens": completion_token_count,
"total_tokens": token_count + completion_token_count
}
yield chunk
else:
resp = {
"id": req_id,
"object": object_type,
"created": created_time,
"model": '',
resp_list: [{
"index": 0,
"finish_reason": stop_reason,
"message": {"role": "assistant", "content": answer}
}],
"usage": {
"prompt_tokens": token_count,
"completion_tokens": completion_token_count,
"total_tokens": token_count + completion_token_count
}
}
yield resp
def completions_action(body: dict, stream_output=False):
object_type = 'text_completion.chunk' if stream_output else 'text_completion'
created_time = int(time.time())
res_id = "res_id-%s" % str(uuid.uuid4())
resp_list = 'choices'
prompt_str = 'prompt'
assert prompt_str in body, "Missing prompt"
gen_kwargs = body
gen_kwargs['stream_output'] = stream_output
if not stream_output:
prompt_arg = body[prompt_str]
if isinstance(prompt_arg, str) or (isinstance(prompt_arg, list) and isinstance(prompt_arg[0], int)):
prompt_arg = [prompt_arg]
resp_list_data = []
total_completion_token_count = 0
total_prompt_token_count = 0
for idx, prompt in enumerate(prompt_arg, start=0):
token_count = count_tokens(prompt)
total_prompt_token_count += token_count
response = deque(get_response(prompt, gen_kwargs), maxlen=1).pop()
completion_token_count = count_tokens(response)
total_completion_token_count += completion_token_count
stop_reason = "stop"
res_idx = {
"index": idx,
"finish_reason": stop_reason,
"text": response,
"logprobs": None,
}
resp_list_data.extend([res_idx])
res_dict = {
"id": res_id,
"object": object_type,
"created": created_time,
"model": '',
resp_list: resp_list_data,
"usage": {
"prompt_tokens": total_prompt_token_count,
"completion_tokens": total_completion_token_count,
"total_tokens": total_prompt_token_count + total_completion_token_count
}
}
yield res_dict
else:
prompt = body[prompt_str]
token_count = count_tokens(prompt)
def text_streaming_chunk(content):
# begin streaming
chunk = {
"id": res_id,
"object": object_type,
"created": created_time,
"model": '',
resp_list: [{
"index": 0,
"finish_reason": None,
"text": content,
"logprobs": None,
}],
}
return chunk
generator = get_response(prompt, gen_kwargs, chunk_response=stream_output,
stream_output=stream_output)
response = ''
for chunk in generator:
response += chunk
yield_chunk = text_streaming_chunk(chunk)
yield yield_chunk
completion_token_count = count_tokens(response)
stop_reason = "stop"
chunk = text_streaming_chunk('')
chunk[resp_list][0]["finish_reason"] = stop_reason
chunk["usage"] = {
"prompt_tokens": token_count,
"completion_tokens": completion_token_count,
"total_tokens": token_count + completion_token_count
}
yield chunk
def chat_completions(body: dict) -> dict:
generator = chat_completion_action(body, stream_output=False)
return deque(generator, maxlen=1).pop()
def stream_chat_completions(body: dict):
for resp in chat_completion_action(body, stream_output=True):
yield resp
def completions(body: dict) -> dict:
generator = completions_action(body, stream_output=False)
return deque(generator, maxlen=1).pop()
def stream_completions(body: dict):
for resp in completions_action(body, stream_output=True):
yield resp
def get_model_info():
# concurrent gradio client
client = get_client()
model_dict = ast.literal_eval(client.predict(api_name='/model_names'))
return dict(model_names=model_dict[0])
def get_model_list():
# concurrent gradio client
client = get_client()
model_dict = ast.literal_eval(client.predict(api_name='/model_names'))
base_models = [x['base_model'] for x in model_dict]
return dict(model_names=base_models)
|