File size: 11,019 Bytes
b585c7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import ast
import os
import subprocess
import time

import pytest

from tests.test_inference_servers import run_h2ogpt_docker
from tests.utils import wrap_test_forked, get_inf_server, get_inf_port
from src.utils import download_simple

results_file = "./benchmarks/perf.json"

@pytest.mark.skipif(not os.getenv('BENCHMARK'),
                    reason="Only for benchmarking")
@pytest.mark.parametrize("backend", [
    # 'transformers',
    # 'text-generation-inference',
    'text-generation-inference-',
])
@pytest.mark.parametrize("base_model", [
    'h2oai/h2ogpt-4096-llama2-7b-chat',
    'h2oai/h2ogpt-4096-llama2-13b-chat',
    'h2oai/h2ogpt-4096-llama2-70b-chat',
])
@pytest.mark.parametrize("task", [
    # 'summary',
    # 'generate',
    'summary_and_generate'
])
@pytest.mark.parametrize("bits", [
    16,
    8,
    4,
], ids=[
    "16-bit",
    "8-bit",
    "4-bit",
])
@pytest.mark.parametrize("ngpus", [
    0,
    1,
    2,
    4,
    8,
], ids=[
    "CPU",
    "1 GPU",
    "2 GPUs",
    "4 GPUs",
    "8 GPUs",
])
@pytest.mark.need_tokens
@wrap_test_forked
def test_perf_benchmarks(backend, base_model, task, bits, ngpus):
    reps = 3
    bench_dict = locals()
    from datetime import datetime
    import json
    import socket
    os.environ['CUDA_VISIBLE_DEVICES'] = "" if ngpus == 0 else "0" if ngpus == 1 else ",".join([str(x) for x in range(ngpus)])
    import torch
    n_gpus = torch.cuda.device_count()
    if n_gpus != ngpus:
        return
    git_sha = (
        subprocess.check_output("git rev-parse HEAD", shell=True)
        .decode("utf-8")
        .strip()
    )
    bench_dict["date"] = datetime.now().strftime("%m/%d/%Y %H:%M:%S")
    bench_dict["git_sha"] = git_sha[:8]
    bench_dict["n_gpus"] = n_gpus
    from importlib.metadata import version
    bench_dict["transformers"] = str(version('transformers'))
    bench_dict["bitsandbytes"] = str(version('bitsandbytes'))
    bench_dict["cuda"] = str(torch.version.cuda)
    bench_dict["hostname"] = str(socket.gethostname())
    gpu_list = [torch.cuda.get_device_name(i) for i in range(n_gpus)]

    # get GPU memory, assumes homogeneous system
    cmd = 'nvidia-smi -i 0 -q | grep -A 1 "FB Memory Usage" | cut -d: -f2 | tail -n 1'
    o = subprocess.check_output(cmd, shell=True, timeout=15)
    mem_gpu = o.decode("utf-8").splitlines()[0].strip() if n_gpus else 0

    bench_dict["gpus"] = "%d x %s (%s)" % (n_gpus, gpu_list[0], mem_gpu) if n_gpus else "CPU"
    assert all([x == gpu_list[0] for x in gpu_list])
    print(bench_dict)

    # launch server(s)
    docker_hash1 = None
    docker_hash2 = None
    max_new_tokens = 4096
    try:
        h2ogpt_args = dict(base_model=base_model,
             chat=True, gradio=True, num_beams=1, block_gradio_exit=False, verbose=True,
             load_half=bits == 16 and n_gpus,
             load_8bit=bits == 8,
             load_4bit=bits == 4,
             langchain_mode='MyData',
             use_auth_token=True,
             max_new_tokens=max_new_tokens,
             use_gpu_id=ngpus == 1,
             use_safetensors=True,
             score_model=None,
             )
        if backend == 'transformers':
            from src.gen import main
            main(**h2ogpt_args)
        elif backend == 'text-generation-inference':
            if bits != 16:
                return
            from tests.test_inference_servers import run_docker
            # HF inference server
            gradio_port = get_inf_port()
            inf_port = gradio_port + 1
            inference_server = 'http://127.0.0.1:%s' % inf_port
            docker_hash1 = run_docker(inf_port, base_model, low_mem_mode=False)  # don't do low-mem, since need tokens for summary
            os.system('docker logs %s | tail -10' % docker_hash1)

            # h2oGPT server
            docker_hash2 = run_h2ogpt_docker(gradio_port, base_model, inference_server=inference_server, max_new_tokens=max_new_tokens)
            time.sleep(30)  # assumes image already downloaded, else need more time
            os.system('docker logs %s | tail -10' % docker_hash2)
        elif backend == 'text-generation-inference-':
            if bits != 16:
                return
            from tests.test_inference_servers import run_docker
            # HF inference server
            gradio_port = get_inf_port()
            inf_port = gradio_port + 1
            inference_server = 'http://127.0.0.1:%s' % inf_port
            docker_hash1 = run_docker(inf_port, base_model, low_mem_mode=False)  # don't do low-mem, since need tokens for summary
            from src.gen import main
            main(**h2ogpt_args)
        else:
            raise NotImplementedError("backend %s not implemented" % backend)

        # get file for client to upload
        url = 'https://cdn.openai.com/papers/whisper.pdf'
        test_file1 = os.path.join('/tmp/', 'whisper1.pdf')
        download_simple(url, dest=test_file1)

        # PURE client code
        from gradio_client import Client
        client = Client(get_inf_server())

        if "summary" in task:
            # upload file(s).  Can be list or single file
            test_file_local, test_file_server = client.predict(test_file1, api_name='/upload_api')
            assert os.path.normpath(test_file_local) != os.path.normpath(test_file_server)

            chunk = True
            chunk_size = 512
            langchain_mode = 'MyData'
            embed = True
            loaders = tuple([None, None, None, None, None])
            extract_frames = 1
            llava_prompt = ''
            h2ogpt_key = ''
            res = client.predict(test_file_server,
                                 chunk, chunk_size, langchain_mode, embed,
                                 *loaders,
                                 extract_frames,
                                 llava_prompt,
                                 h2ogpt_key,
                                 api_name='/add_file_api')
            assert res[0] is None
            assert res[1] == langchain_mode
            # assert os.path.basename(test_file_server) in res[2]
            assert res[3] == ''

            # ask for summary, need to use same client if using MyData
            api_name = '/submit_nochat_api'  # NOTE: like submit_nochat but stable API for string dict passing
            kwargs = dict(langchain_mode=langchain_mode,
                          langchain_action="Summarize",  # uses full document, not vectorDB chunks
                          top_k_docs=4,  # -1 == entire pdf
                          document_subset='Relevant',
                          document_choice='All',
                          max_new_tokens=max_new_tokens,
                          max_time=300,
                          do_sample=False,
                          prompt_summary='Summarize into single paragraph',
                          system_prompt='',
                          )

            t0 = time.time()
            for r in range(reps):
                res = client.predict(
                    str(dict(kwargs)),
                    api_name=api_name,
                )
            t1 = time.time()
            time_taken = (t1 - t0) / reps
            res = ast.literal_eval(res)
            response = res['response']
            sources = res['sources']
            size_summary = os.path.getsize(test_file1)
            # print(response)
            print("Time to summarize %s bytes into %s bytes: %.4f" % (size_summary, len(response), time_taken))
            bench_dict["summarize_input_len_bytes"] = size_summary
            bench_dict["summarize_output_len_bytes"] = len(response)
            bench_dict["summarize_time"] = time_taken
            # bench_dict["summarize_tokens_per_sec"] = res['tokens/s']
            assert 'my_test_pdf.pdf' in sources

        if "generate" in task:
            api_name = '/submit_nochat_api'  # NOTE: like submit_nochat but stable API for string dict passing
            kwargs = dict(prompt_summary="Write a poem about water.")
            t0 = time.time()
            for r in range(reps):
                res = client.predict(
                    str(dict(kwargs)),
                    api_name=api_name,
                )
            t1 = time.time()
            time_taken = (t1 - t0) / reps
            res = ast.literal_eval(res)
            response = res['response']
            # print(response)
            print("Time to generate %s bytes: %.4f" % (len(response), time_taken))
            bench_dict["generate_output_len_bytes"] = len(response)
            bench_dict["generate_time"] = time_taken
            # bench_dict["generate_tokens_per_sec"] = res['tokens/s']
    except BaseException as e:
        if 'CUDA out of memory' in str(e):
            e = "OOM"
            bench_dict["exception"] = str(e)
        else:
            raise
    finally:
        if bench_dict["backend"] == "text-generation-inference-":
            # Fixup, so appears as same
            bench_dict["backend"] = "text-generation-inference"
        if 'summarize_time' in bench_dict or 'generate_time' in bench_dict or bench_dict.get('exception') == "OOM":
            with open(results_file, mode="a") as f:
                f.write(json.dumps(bench_dict) + "\n")
        if "text-generation-inference" in backend:
            if docker_hash1:
                os.system("docker stop %s" % docker_hash1)
            if docker_hash2:
                os.system("docker stop %s" % docker_hash2)


@pytest.mark.skip("run manually")
def test_plot_results():
    import pandas as pd
    import json
    res = []
    with open(results_file) as f:
        for line in f.readlines():
            entry = json.loads(line)
            res.append(entry)
    X = pd.DataFrame(res)
    X.to_csv(results_file + ".csv", index=False)

    result_cols = ['summarization time [sec]', 'generation speed [tokens/sec]']
    X[result_cols[0]] = X['summarize_time']
    X[result_cols[1]] = X['generate_output_len_bytes'] / 4 / X['generate_time']
    with open(results_file.replace(".json", ".md"), "w") as f:
        for backend in pd.unique(X['backend']):
            print("# Backend: %s" % backend, file=f)
            for base_model in pd.unique(X['base_model']):
                print("## Model: %s (%s)" % (base_model, backend), file=f)
                for n_gpus in sorted(pd.unique(X['n_gpus'])):
                    XX = X[(X['base_model'] == base_model) & (X['backend'] == backend) & (X['n_gpus'] == n_gpus)]
                    if XX.shape[0] == 0:
                        continue
                    print("### Number of GPUs: %s" % n_gpus, file=f)
                    XX.drop_duplicates(subset=['bits', 'gpus'], keep='last', inplace=True)
                    XX = XX.sort_values(['bits', result_cols[1]], ascending=[False, False])
                    XX['exception'] = XX['exception'].astype(str).replace("nan", "")
                    print(XX[['bits', 'gpus', result_cols[0], result_cols[1], 'exception']].to_markdown(index=False), file=f)