File size: 6,510 Bytes
b585c7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import hashlib
import os
import sys
import shutil
from functools import wraps, partial
import pytest
if os.path.dirname('src') not in sys.path:
sys.path.append('src')
os.environ['HARD_ASSERTS'] = "1"
from src.utils import call_subprocess_onetask, makedirs, FakeTokenizer, download_simple, sanitize_filename
def get_inf_port():
if os.getenv('HOST') is not None:
inf_port = os.environ['HOST'].split(':')[-1]
elif os.getenv('GRADIO_SERVER_PORT') is not None:
inf_port = os.environ['GRADIO_SERVER_PORT']
else:
inf_port = str(7860)
return int(inf_port)
def get_inf_server():
if os.getenv('HOST') is not None:
inf_server = os.environ['HOST']
elif os.getenv('GRADIO_SERVER_PORT') is not None:
inf_server = "http://localhost:%s" % os.environ['GRADIO_SERVER_PORT']
else:
raise ValueError("Expect tests to set HOST or GRADIO_SERVER_PORT")
return inf_server
def get_mods():
testtotalmod = int(os.getenv('TESTMODULOTOTAL', '1'))
testmod = int(os.getenv('TESTMODULO', '0'))
return testtotalmod, testmod
def do_skip_test(name):
"""
Control if skip test. note that skipping all tests does not fail, doing no tests is what fails
:param name:
:return:
"""
testtotalmod, testmod = get_mods()
return int(get_sha(name), 16) % testtotalmod != testmod
def wrap_test_forked(func):
"""Decorate a function to test, call in subprocess"""
@wraps(func)
def f(*args, **kwargs):
# automatically list or set, so can globally control server ports or host for all tests
gradio_port = os.environ['GRADIO_SERVER_PORT'] = os.getenv('GRADIO_SERVER_PORT', str(7860))
gradio_port = int(gradio_port)
# testtotalmod, testmod = get_mods()
# gradio_port += testmod
os.environ['HOST'] = os.getenv('HOST', "http://localhost:%s" % gradio_port)
pytest_name = get_test_name()
if do_skip_test(pytest_name):
# Skipping is based on raw name, so deterministic
pytest.skip("[%s] TEST SKIPPED due to TESTMODULO" % pytest_name)
func_new = partial(call_subprocess_onetask, func, args, kwargs)
return run_test(func_new)
return f
def run_test(func, *args, **kwargs):
return func(*args, **kwargs)
def get_sha(value):
return hashlib.md5(str(value).encode('utf-8')).hexdigest()
def get_test_name():
tn = os.environ['PYTEST_CURRENT_TEST'].split(':')[-1]
tn = "_".join(tn.split(' ')[:-1]) # skip (call) at end
return sanitize_filename(tn)
def make_user_path_test():
import os
import shutil
user_path = makedirs('user_path_test', use_base=True)
if os.path.isdir(user_path):
shutil.rmtree(user_path)
user_path = makedirs('user_path_test', use_base=True)
db_dir = "db_dir_UserData"
db_dir = makedirs(db_dir, use_base=True)
if os.path.isdir(db_dir):
shutil.rmtree(db_dir)
db_dir = makedirs(db_dir, use_base=True)
shutil.copy('data/pexels-evg-kowalievska-1170986_small.jpg', user_path)
shutil.copy('README.md', user_path)
shutil.copy('docs/FAQ.md', user_path)
return user_path
def get_llama(llama_type=3):
from huggingface_hub import hf_hub_download
# FIXME: Pass into main()
if llama_type == 1:
file = 'ggml-model-q4_0_7b.bin'
dest = 'models/7B/'
prompt_type = 'plain'
elif llama_type == 2:
file = 'WizardLM-7B-uncensored.ggmlv3.q8_0.bin'
dest = './'
prompt_type = 'wizard2'
elif llama_type == 3:
file = download_simple('https://huggingface.co/TheBloke/Llama-2-7b-Chat-GGUF/resolve/main/llama-2-7b-chat.Q6_K.gguf?download=true')
dest = './'
prompt_type = 'llama2'
else:
raise ValueError("unknown llama_type=%s" % llama_type)
makedirs(dest, exist_ok=True)
full_path = os.path.join(dest, file)
if not os.path.isfile(full_path):
# True for case when locally already logged in with correct token, so don't have to set key
token = os.getenv('HUGGING_FACE_HUB_TOKEN', True)
out_path = hf_hub_download('h2oai/ggml', file, token=token, repo_type='model')
# out_path will look like '/home/jon/.cache/huggingface/hub/models--h2oai--ggml/snapshots/57e79c71bb0cee07e3e3ffdea507105cd669fa96/ggml-model-q4_0_7b.bin'
shutil.copy(out_path, dest)
return prompt_type, full_path
def kill_weaviate(db_type):
"""
weaviate launches detatched server, which accumulates entries in db, but we want to start freshly
"""
if db_type == 'weaviate':
os.system('pkill --signal 9 -f weaviate-embedded/weaviate')
def count_tokens_llm(prompt, base_model='h2oai/h2ogpt-oig-oasst1-512-6_9b', tokenizer=None):
import time
if tokenizer is None:
assert base_model is not None
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(base_model)
t0 = time.time()
a = len(tokenizer(prompt)['input_ids'])
print('llm: ', a, time.time() - t0)
return dict(llm=a)
def count_tokens(prompt, base_model='h2oai/h2ogpt-oig-oasst1-512-6_9b'):
tokenizer = FakeTokenizer()
num_tokens = tokenizer.num_tokens_from_string(prompt)
print(num_tokens)
from transformers import AutoTokenizer
t = AutoTokenizer.from_pretrained("distilgpt2")
llm_tokenizer = AutoTokenizer.from_pretrained(base_model)
from InstructorEmbedding import INSTRUCTOR
emb = INSTRUCTOR('hkunlp/instructor-large')
import nltk
def nltkTokenize(text):
words = nltk.word_tokenize(text)
return words
import re
WORD = re.compile(r'\w+')
def regTokenize(text):
words = WORD.findall(text)
return words
counts = {}
import time
t0 = time.time()
a = len(regTokenize(prompt))
print('reg: ', a, time.time() - t0)
counts.update(dict(reg=a))
t0 = time.time()
a = len(nltkTokenize(prompt))
print('nltk: ', a, time.time() - t0)
counts.update(dict(nltk=a))
t0 = time.time()
a = len(t(prompt)['input_ids'])
print('tiktoken: ', a, time.time() - t0)
counts.update(dict(tiktoken=a))
t0 = time.time()
a = len(llm_tokenizer(prompt)['input_ids'])
print('llm: ', a, time.time() - t0)
counts.update(dict(llm=a))
t0 = time.time()
a = emb.tokenize([prompt])['input_ids'].shape[1]
print('instructor-large: ', a, time.time() - t0)
counts.update(dict(instructor=a))
return counts
|