test / models /predict_aquila.py
iblfe's picture
Upload folder using huggingface_hub
b585c7f verified
raw
history blame
14.7 kB
"""
Copied from https://github.com/lm-sys/FastChat.
Later we will contribute our changes into it.
"""
import dataclasses
from enum import auto, IntEnum
from typing import List, Any, Dict
import math
from typing import List, Optional, Tuple, Union
import random
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from transformers import (
LogitsProcessorList,
MinLengthLogitsProcessor,
TopKLogitsWarper,
TemperatureLogitsWarper,
TopPLogitsWarper,
StoppingCriteriaList,
MaxLengthCriteria,
BitsAndBytesConfig,
)
class SeparatorStyle(IntEnum):
"""Separator styles."""
ADD_COLON_SINGLE = auto()
ADD_COLON_TWO = auto()
ADD_COLON_SPACE_SINGLE = auto()
NO_COLON_SINGLE = auto()
NO_COLON_TWO = auto()
ADD_NEW_LINE_SINGLE = auto()
@dataclasses.dataclass
class Conversation:
"""A class that manages prompt templates and keeps all conversation history."""
# The name of this template
name: str
# The template of the system prompt
system_template: str = "{system_message}"
# The system message
system_message: str = ""
# The names of two roles
roles: List[str] = (("USER", "ASSISTANT"),)
# All messages. Each item is (role, message).
messages: List[List[str]] = ()
# The number of few shot examples
offset: int = 0
# The separator style and configurations
sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
sep: str = "\n"
sep2: str = None
# Stop criteria (the default one is EOS token)
stop_str: str = None
# Stops generation if meeting any token in this list
stop_token_ids: List[int] = None
def get_prompt(self) -> str:
"""Get the prompt for generation."""
system_prompt = self.system_template.format(system_message=self.system_message)
if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
ret = system_prompt + self.sep
for role, message in self.messages:
if message:
ret += role + ": " + message + self.sep
else:
ret += role + ":"
return ret
elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
seps = [self.sep, self.sep2]
ret = system_prompt + seps[0]
for i, (role, message) in enumerate(self.messages):
if message:
ret += role + ": " + message + seps[i % 2]
else:
ret += role + ":"
return ret
elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
ret = system_prompt + self.sep
for role, message in self.messages:
if message:
ret += role + ": " + message + self.sep
else:
ret += role + ": " # must be end with a space
return ret
elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
ret = "" if system_prompt == "" else system_prompt + self.sep
for role, message in self.messages:
if message:
ret += role + "\n" + message + self.sep
else:
ret += role + "\n"
return ret
elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
ret = system_prompt
for role, message in self.messages:
if message:
ret += role + message + self.sep
else:
ret += role
return ret
elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
seps = [self.sep, self.sep2]
ret = system_prompt
for i, (role, message) in enumerate(self.messages):
if message:
ret += role + message + seps[i % 2]
else:
ret += role
return ret
def set_system_message(self, system_message: str):
"""Set the system message."""
self.system_message = system_message
def append_message(self, role: str, message: str):
"""Append a new message."""
self.messages.append([role, message])
def update_last_message(self, message: str):
"""Update the last output.
The last message is typically set to be None when constructing the prompt,
so we need to update it in-place after getting the response from a model.
"""
self.messages[-1][1] = message
def copy(self):
return Conversation(
name=self.name,
system_template=self.system_template,
system_message=self.system_message,
roles=self.roles,
messages=[[x, y] for x, y in self.messages],
offset=self.offset,
sep_style=self.sep_style,
sep=self.sep,
sep2=self.sep2,
stop_str=self.stop_str,
stop_token_ids=self.stop_token_ids,
)
def dict(self):
return {
"template_name": self.name,
"system_message": self.system_message,
"roles": self.roles,
"messages": self.messages,
"offset": self.offset,
}
# A global registry for all conversation templates
conv_templates: Dict[str, Conversation] = {}
def register_conv_template(template: Conversation, override: bool = False):
"""Register a new conversation template."""
if not override:
assert (
template.name not in conv_templates
), f"{template.name} has been registered."
conv_templates[template.name] = template
def get_conv_template(name: str) -> Conversation:
"""Get a conversation template."""
return conv_templates[name].copy()
def get_conversation_template(model_path: str) -> Conversation:
"""Get the default conversation template."""
if "aquila-v1" in model_path:
return get_conv_template("aquila-v1")
elif "aquila-chat" in model_path:
return get_conv_template("aquila-chat")
elif "aquila-legacy" in model_path:
return get_conv_template("aquila-legacy")
else:
return get_conv_template("aquila")
# AquilaChat default template
# source: https://github.com/FlagAI-Open/FlagAI/blob/master/examples/Aquila/Aquila-chat/cyg_conversation.py
register_conv_template(
Conversation(
name="aquila-chat",
system_message="A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
roles=("Human", "Assistant", "System"),
messages=(),
offset=0,
sep_style=SeparatorStyle.ADD_COLON_SINGLE,
sep="###",
sep2="",
stop_str=["###", "</s>", "[UNK]"],
)
)
register_conv_template(
Conversation(
name="aquila-legacy",
system_message="A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
roles=("### Human: ", "### Assistant: ", "System"),
messages=(),
offset=0,
sep_style=SeparatorStyle.NO_COLON_TWO,
sep="\n",
sep2="</s>",
stop_str=["</s>", "[UNK]"],
)
)
register_conv_template(
Conversation(
name="aquila",
system_message="A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
roles=("Human", "Assistant", "System"),
messages=(),
offset=0,
sep_style=SeparatorStyle.ADD_COLON_TWO,
sep="###",
sep2="</s>",
stop_str=["</s>", "[UNK]"],
)
)
register_conv_template(
Conversation(
name="aquila-v1",
roles=("<|startofpiece|>", "<|endofpiece|>", ""),
messages=(),
offset=0,
sep_style=SeparatorStyle.NO_COLON_TWO,
sep="",
sep2="</s>",
stop_str=["</s>", "<|endoftext|>"],
)
)
if __name__ == "__main__":
print("aquila template:")
conv = get_conv_template("aquila")
conv.append_message(conv.roles[0], "Hello!")
conv.append_message(conv.roles[1], "Hi!")
conv.append_message(conv.roles[0], "How are you?")
conv.append_message(conv.roles[1], None)
print(conv.get_prompt())
print("\n")
print("aquila-chat template:")
conv = get_conv_template("aquila-chat")
conv.append_message(conv.roles[0], "Hello!")
conv.append_message(conv.roles[1], "Hi!")
conv.append_message(conv.roles[0], "How are you?")
conv.append_message(conv.roles[1], None)
print(conv.get_prompt())
print("\n")
print("aquila-v1 template:")
conv = get_conv_template("aquila-v1")
conv.append_message(conv.roles[0], "Hello!")
conv.append_message(conv.roles[1], "Hi!")
conv.append_message(conv.roles[0], "How are you?")
conv.append_message(conv.roles[1], None)
print(conv.get_prompt())
print("\n")
print("aquila-legacy template:")
conv = get_conv_template("aquila-legacy")
conv.append_message(conv.roles[0], "Hello!")
conv.append_message(conv.roles[1], "Hi!")
conv.append_message(conv.roles[0], "How are you?")
conv.append_message(conv.roles[1], None)
print(conv.get_prompt())
print("\n")
def set_random_seed(seed):
"""Set random seed for reproducability."""
if seed is not None and seed > 0:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
def covert_prompt_to_input_ids_with_history(text, history, tokenizer, max_token, convo_template="aquila-chat"):
# aquila-chat as default
conv = get_conv_template(convo_template)
conv.append_message(conv.roles[1], None)
conv.append_message(conv.roles[0], text)
example = tokenizer.encode_plus(f"{conv.get_prompt()} ", None, max_length=None)['input_ids']
while(len(history) > 0 and (len(example) < max_token)):
tmp = history.pop()
if tmp[0] == 'ASSISTANT':
conv.append_message(conv.roles[1], tmp[1])
else:
conv.append_message(conv.roles[0], tmp[1])
example = tokenizer.encode_plus(f"{conv.get_prompt()} ", None, max_length=None)['input_ids']
if len(example) >= max_token:
conv.messages.pop()
conv.messages = conv.messages[::-1]
print('model in:', conv.get_prompt())
example = tokenizer.encode_plus(f"{conv.get_prompt()} ", None, max_length=None)['input_ids']
return example
def predict(model, text, tokenizer=None,
max_gen_len=200, top_p=0.95,
seed=1234, topk=100,
temperature=0.9,
sft=True, convo_template = "",
device = "cuda",
model_name="AquilaChat2-7B",
history=[],
**kwargs):
vocab = tokenizer.get_vocab()
id2word = {v:k for k, v in vocab.items()}
template_map = {"AquilaChat2-7B": "aquila-v1",
"AquilaChat2-34B": "aquila-legacy",
"AquilaChat2-7B-16K": "aquila",
"AquilaChat2-34B-16K": "aquila"}
if not convo_template:
convo_template=template_map.get(model_name, "aquila-chat")
set_random_seed(seed)
if temperature == 0:
topk = 1
temperature = 1.0
if sft:
tokens = covert_prompt_to_input_ids_with_history(text, history=history, tokenizer=tokenizer, max_token=1000000, convo_template=convo_template)
tokens = torch.tensor(tokens)[None,].to(device)
else :
tokens = tokenizer.encode_plus(text)["input_ids"]
print(tokenizer.decode(tokens))
tokens = torch.tensor(tokens)[None,].to(device)
input_length = len(tokens[0])
with torch.no_grad():
# instantiate logits processors
logits_processor = LogitsProcessorList(
[
MinLengthLogitsProcessor(1, eos_token_id=100007),
]
)
# instantiate logits processors
logits_warper = LogitsProcessorList(
[
TopPLogitsWarper(top_p),
TopKLogitsWarper(topk),
TemperatureLogitsWarper(temperature),
]
)
stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=input_length + max_gen_len)])
out = model.sample(
tokens,
logits_processor=logits_processor,
logits_warper=logits_warper,
stopping_criteria=stopping_criteria,
return_dict_in_generate=True,
output_scores=True,
)
# print(out)
out_ids = out["sequences"][0][input_length:].cpu().numpy()
out_scores = out["scores"]
out_scores = torch.cat(out_scores, dim=0)
out_scores = torch.nn.functional.softmax(out_scores, dim=-1).cpu().numpy()
probs = []
for i in range(len(out_ids)):
probs.append(float(out_scores[i][out_ids[i]]))
# print(f"probs is {probs}")
convert_tokens = []
for t in out_ids:
if t == 100006:
convert_tokens.append("[CLS]")
else :
convert_tokens.append(id2word.get(t, "[unkonwn_token]"))
out_text = tokenizer.decode(out_ids.tolist())
out = out_text
if "[UNK]" in out:
special_index = out.index("[UNK]")
out = out[:special_index]
token_length = len(tokenizer.encode_plus(out)["input_ids"])
convert_tokens = convert_tokens[:token_length]
probs = probs[:token_length]
if "</s>" in out:
special_index = out.index("</s>")
out = out[: special_index]
token_length = len(tokenizer.encode_plus(out)["input_ids"])
convert_tokens = convert_tokens[:token_length]
probs = probs[:token_length]
if len(out) > 0 and out[0] == " ":
out = out[1:]
convert_tokens = convert_tokens[1:]
probs = probs[1:]
# Update history
history.insert(0, ('ASSISTANT', out))
history.insert(0, ('USER', text))
return out