|
import functools |
|
import json |
|
|
|
from src.enums import t5_type |
|
from src.utils import have_optimum |
|
|
|
|
|
def get_loaders(model_name, reward_type, llama_type=None, |
|
load_gptq='', |
|
use_autogptq=False, |
|
load_awq='', |
|
load_exllama=False, |
|
config=None, |
|
rope_scaling=None, max_seq_len=None, model_name_exllama_if_no_config='', |
|
exllama_dict=None, gptq_dict=None, |
|
hf_model_dict={}, |
|
): |
|
|
|
|
|
if load_exllama: |
|
if exllama_dict is None: |
|
exllama_dict = {} |
|
from src.llm_exllama import H2OExLlamaTokenizer, H2OExLlamaGenerator |
|
from exllama.model import ExLlama, ExLlamaCache, ExLlamaConfig |
|
import os, glob |
|
|
|
if config: |
|
|
|
from transformers import TRANSFORMERS_CACHE |
|
model_directory = os.path.join(TRANSFORMERS_CACHE, 'models--' + config.name_or_path.replace('/', '--'), |
|
'snapshots', config._commit_hash) |
|
else: |
|
|
|
|
|
model_directory = model_name_exllama_if_no_config |
|
|
|
|
|
revision = config._commit_hash |
|
from huggingface_hub import snapshot_download |
|
snapshot_download(repo_id=model_name, revision=revision) |
|
|
|
|
|
tokenizer_path = os.path.join(model_directory, "tokenizer.model") |
|
assert os.path.isfile(tokenizer_path), "Missing %s" % tokenizer_path |
|
model_config_path = os.path.join(model_directory, "config.json") |
|
assert os.path.isfile(model_config_path), "Missing %s" % model_config_path |
|
st_pattern = os.path.join(model_directory, "*.safetensors") |
|
model_path = glob.glob(st_pattern)[0] |
|
assert os.path.isfile(model_path), "Missing %s" % model_path |
|
|
|
|
|
exconfig = ExLlamaConfig(model_config_path) |
|
rope_scaling = rope_scaling or {} |
|
exconfig.alpha_value = rope_scaling.get('alpha_value', 1) |
|
exconfig.compress_pos_emb = rope_scaling.get('compress_pos_emb', 1) |
|
|
|
assert hasattr(config, 'max_position_embeddings') or hasattr(config, |
|
'max_sequence_length'), "Improve code if no such argument" |
|
if hasattr(config, 'max_position_embeddings'): |
|
exconfig.max_seq_len = int(config.max_position_embeddings * exconfig.alpha_value) |
|
else: |
|
exconfig.max_seq_len = int(config.max_sequence_length * exconfig.alpha_value) |
|
if 'Llama-2'.lower() in model_name.lower(): |
|
|
|
exconfig.max_seq_len = int(4096 * exconfig.alpha_value) |
|
if max_seq_len is not None: |
|
exconfig.max_seq_len = max_seq_len |
|
|
|
exconfig.model_path = model_path |
|
for k, v in exllama_dict.items(): |
|
setattr(exconfig, k, v) |
|
if 'set_auto_map' in exllama_dict: |
|
exconfig.auto_map = [float(alloc) for alloc in exllama_dict['set_auto_map'].split(",")] |
|
|
|
model = ExLlama(exconfig) |
|
tokenizer = H2OExLlamaTokenizer(tokenizer_path) |
|
tokenizer.model_max_length = exconfig.max_seq_len |
|
|
|
cache = ExLlamaCache(model) |
|
generator = H2OExLlamaGenerator(model, tokenizer, cache) |
|
return generator, tokenizer, False |
|
if load_gptq and use_autogptq: |
|
if gptq_dict is None: |
|
gptq_dict = {} |
|
from transformers import AutoTokenizer |
|
from auto_gptq import AutoGPTQForCausalLM |
|
if 'use_triton' not in gptq_dict: |
|
gptq_dict['use_triton'] = False |
|
if 'llama-2-70B-chat-GPTQ' in model_name.lower() and 'inject_fused_attention' not in gptq_dict: |
|
gptq_dict.update(dict(inject_fused_attention=False)) |
|
model_loader = functools.partial(AutoGPTQForCausalLM.from_quantized, |
|
quantize_config=None, |
|
**gptq_dict, |
|
) |
|
return model_loader, AutoTokenizer, False |
|
if load_gptq and not use_autogptq: |
|
assert have_optimum, "To use HF transformers GPTQ, please: pip install optimum" |
|
if load_awq: |
|
from transformers import AutoTokenizer |
|
from awq import AutoAWQForCausalLM |
|
model_loader = functools.partial(AutoAWQForCausalLM.from_quantized, |
|
fuse_layers=True, |
|
) |
|
return model_loader, AutoTokenizer, False |
|
if llama_type is None: |
|
llama_type = "llama" in model_name.lower() |
|
if llama_type and not load_gptq: |
|
from transformers import LlamaForCausalLM, LlamaTokenizer |
|
return functools.partial(LlamaForCausalLM.from_pretrained, **hf_model_dict), LlamaTokenizer, False |
|
elif 'distilgpt2' in model_name.lower(): |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
return functools.partial(AutoModelForCausalLM.from_pretrained, **hf_model_dict), AutoTokenizer, False |
|
elif 'gpt2' in model_name.lower(): |
|
from transformers import GPT2LMHeadModel, GPT2Tokenizer |
|
return functools.partial(GPT2LMHeadModel.from_pretrained, **hf_model_dict), GPT2Tokenizer, False |
|
elif 'mbart-' in model_name.lower(): |
|
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast |
|
return functools.partial(MBartForConditionalGeneration.from_pretrained, **hf_model_dict), MBart50TokenizerFast, True |
|
elif t5_type(model_name): |
|
from transformers import AutoTokenizer, T5ForConditionalGeneration |
|
return functools.partial(T5ForConditionalGeneration.from_pretrained, **hf_model_dict), AutoTokenizer, True |
|
elif 'bigbird' in model_name: |
|
from transformers import BigBirdPegasusForConditionalGeneration, AutoTokenizer |
|
return functools.partial(BigBirdPegasusForConditionalGeneration.from_pretrained, **hf_model_dict), AutoTokenizer, True |
|
elif 'bart-large-cnn-samsum' in model_name or 'flan-t5-base-samsum' in model_name: |
|
from transformers import pipeline |
|
return pipeline, "summarization", False |
|
elif reward_type or 'OpenAssistant/reward-model'.lower() in model_name.lower(): |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
return functools.partial(AutoModelForSequenceClassification.from_pretrained, **hf_model_dict), AutoTokenizer, False |
|
else: |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
model_loader = functools.partial(AutoModelForCausalLM.from_pretrained, **hf_model_dict) |
|
tokenizer_loader = AutoTokenizer |
|
return model_loader, tokenizer_loader, False |
|
|
|
|
|
def get_tokenizer(tokenizer_loader, tokenizer_base_model, local_files_only, resume_download, use_auth_token): |
|
tokenizer = tokenizer_loader.from_pretrained(tokenizer_base_model, |
|
local_files_only=local_files_only, |
|
resume_download=resume_download, |
|
token=use_auth_token, |
|
padding_side='left') |
|
|
|
tokenizer.pad_token_id = 0 |
|
|
|
|
|
|
|
tokenizer.padding_side = "left" |
|
|
|
return tokenizer |
|
|