import os import subprocess import time from datetime import datetime import pytest from src.utils import get_ngpus_vis, makedirs from tests.utils import wrap_test_forked, get_inf_port, get_inf_server from tests.test_langchain_units import have_openai_key, have_replicate_key from src.client_test import run_client_many, test_client_basic_api_lean from src.enums import PromptType, LangChainAction @pytest.mark.parametrize("base_model", ['h2oai/h2ogpt-oig-oasst1-512-6_9b', 'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2', 'llama', 'gptj'] ) @pytest.mark.parametrize("force_langchain_evaluate", [False, True]) @pytest.mark.parametrize("do_langchain", [False, True]) @pytest.mark.parametrize("enforce_h2ogpt_api_key", [False, True]) @pytest.mark.parametrize("enforce_h2ogpt_ui_key", [False, True]) @wrap_test_forked def test_gradio_inference_server(base_model, force_langchain_evaluate, do_langchain, enforce_h2ogpt_ui_key, enforce_h2ogpt_api_key, prompt='Who are you?', stream_output=False, max_new_tokens=256, langchain_mode='Disabled', langchain_action=LangChainAction.QUERY.value, langchain_agents=[], user_path=None, langchain_modes=['UserData', 'MyData', 'LLM', 'Disabled'], docs_ordering_type='reverse_sort'): if enforce_h2ogpt_api_key and base_model != 'h2oai/h2ogpt-oig-oasst1-512-6_9b': # no need for so many cases return if force_langchain_evaluate: langchain_mode = 'MyData' if do_langchain: langchain_mode = 'UserData' from tests.utils import make_user_path_test user_path = make_user_path_test() # from src.gpt_langchain import get_some_dbs_from_hf # get_some_dbs_from_hf() max_seq_len_client = None if base_model in ['h2oai/h2ogpt-oig-oasst1-512-6_9b', 'h2oai/h2ogpt-oasst1-512-12b']: prompt_type = PromptType.human_bot.name elif base_model in ['h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2']: prompt_type = PromptType.prompt_answer.name elif base_model in ['llama']: max_seq_len_client = 2048 prompt_type = PromptType.llama2.name elif base_model in ['gptj']: max_seq_len_client = 2048 prompt_type = PromptType.gptj.name else: raise NotImplementedError(base_model) main_kwargs = dict(base_model=base_model, prompt_type=prompt_type, chat=True, stream_output=stream_output, gradio=True, num_beams=1, block_gradio_exit=False, max_new_tokens=max_new_tokens, langchain_mode=langchain_mode, langchain_action=langchain_action, langchain_agents=langchain_agents, user_path=user_path, langchain_modes=langchain_modes, docs_ordering_type=docs_ordering_type, force_langchain_evaluate=force_langchain_evaluate, system_prompt='', verbose=True) # inference server from src.gen import main main(**main_kwargs) inference_server = get_inf_server() inf_port = get_inf_port() # server that consumes inference server has different port from src.gen import main client_port = inf_port + 2 # assume will not use + 2 in testing, + 1 reserved for non-gradio inference servers # only case when GRADIO_SERVER_PORT and HOST should appear in tests because using 2 gradio instances os.environ['GRADIO_SERVER_PORT'] = str(client_port) os.environ['HOST'] = "http://127.0.0.1:%s" % client_port h2ogpt_key = 'foodoo#' main_kwargs = main_kwargs.copy() if enforce_h2ogpt_api_key: main_kwargs.update(dict(enforce_h2ogpt_api_key=True, h2ogpt_api_keys=[h2ogpt_key])) main_kwargs.update(dict(max_seq_len=max_seq_len_client)) main(**main_kwargs, inference_server=inference_server) # client test to server that only consumes inference server from src.client_test import run_client_chat res_dict, client = run_client_chat(prompt=prompt, prompt_type=prompt_type, stream_output=stream_output, max_new_tokens=max_new_tokens, langchain_mode=langchain_mode, langchain_action=langchain_action, langchain_agents=langchain_agents) assert res_dict['prompt'] == prompt assert res_dict['iinput'] == '' # will use HOST from above if enforce_h2ogpt_api_key: # try without key first ret1, ret2, ret3, ret4, ret5, ret6, ret7 = run_client_many(prompt_type=None) assert 'Invalid Access Key' in ret1['response'] assert 'Invalid Access Key' in ret2['response'] assert 'Invalid Access Key' in ret3['response'] assert 'Invalid Access Key' in ret4['response'] assert 'Invalid Access Key' in ret5['response'] assert 'Invalid Access Key' in ret6['response'] assert 'Invalid Access Key' in ret7['response'] ret1, ret2, ret3, ret4, ret5, ret6, ret7 = run_client_many(prompt_type=None, h2ogpt_key='foo') assert 'Invalid Access Key' in ret1['response'] assert 'Invalid Access Key' in ret2['response'] assert 'Invalid Access Key' in ret3['response'] assert 'Invalid Access Key' in ret4['response'] assert 'Invalid Access Key' in ret5['response'] assert 'Invalid Access Key' in ret6['response'] assert 'Invalid Access Key' in ret7['response'] # try normal or with key if enforcing ret1, ret2, ret3, ret4, ret5, ret6, ret7 = run_client_many(prompt_type=None, h2ogpt_key=h2ogpt_key) # client shouldn't have to specify if base_model == 'h2oai/h2ogpt-oig-oasst1-512-6_9b': assert 'h2oGPT' in ret1['response'] assert 'Birds' in ret2['response'] assert 'Birds' in ret3['response'] assert 'h2oGPT' in ret4['response'] assert 'h2oGPT' in ret5['response'] assert 'h2oGPT' in ret6['response'] assert 'h2oGPT' in ret7['response'] elif base_model == 'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2': assert 'I am a language model trained' in ret1['response'] or \ 'I am a helpful assistant' in ret1['response'] or \ 'I am a chatbot.' in ret1['response'] or \ 'a chat-based assistant that can answer questions' in ret1['response'] or \ 'I am an AI language model' in ret1['response'] or \ 'I am an AI assistant.' in ret1['response'] assert 'Once upon a time' in ret2['response'] assert 'Once upon a time' in ret3['response'] assert 'I am a language model trained' in ret4['response'] or 'I am a helpful assistant' in \ ret4['response'] or 'I am a chatbot.' in ret4['response'] or \ 'a chat-based assistant that can answer questions' in ret4['response'] or \ 'I am an AI language model' in ret4['response'] or \ 'I am an AI assistant.' in ret4['response'] assert 'I am a language model trained' in ret5['response'] or 'I am a helpful assistant' in \ ret5['response'] or 'I am a chatbot.' in ret5['response'] or \ 'a chat-based assistant that can answer questions' in ret5['response'] or \ 'I am an AI language model' in ret5['response'] or \ 'I am an AI assistant.' in ret5['response'] assert 'I am a language model trained' in ret6['response'] or 'I am a helpful assistant' in \ ret6['response'] or 'I am a chatbot.' in ret6['response'] or \ 'a chat-based assistant that can answer questions' in ret6['response'] or \ 'I am an AI language model' in ret6['response'] or \ 'I am an AI assistant.' in ret6['response'] assert 'I am a language model trained' in ret7['response'] or 'I am a helpful assistant' in \ ret7['response'] or 'I am a chatbot.' in ret7['response'] or \ 'a chat-based assistant that can answer questions' in ret7['response'] or \ 'I am an AI language model' in ret7['response'] or \ 'I am an AI assistant.' in ret7['response'] elif base_model == 'llama': assert 'I am a bot.' in ret1['response'] or 'can I assist you today?' in ret1[ 'response'] or 'How can I assist you?' in ret1['response'] or "I'm LLaMA" in ret1['response'] assert 'Birds' in ret2['response'] or 'Once upon a time' in ret2['response'] assert 'Birds' in ret3['response'] or 'Once upon a time' in ret3['response'] assert 'I am a bot.' in ret4['response'] or 'can I assist you today?' in ret4[ 'response'] or 'How can I assist you?' in ret4['response'] or "I'm LLaMA" in ret4['response'] assert 'I am a bot.' in ret5['response'] or 'can I assist you today?' in ret5[ 'response'] or 'How can I assist you?' in ret5['response'] or "I'm LLaMA" in ret5['response'] assert 'I am a bot.' in ret6['response'] or 'can I assist you today?' in ret6[ 'response'] or 'How can I assist you?' in ret6['response'] or "I'm LLaMA" in ret6['response'] assert 'I am a bot.' in ret7['response'] or 'can I assist you today?' in ret7[ 'response'] or 'How can I assist you?' in ret7['response'] or "I'm LLaMA" in ret7['response'] elif base_model == 'gptj': assert 'I am a bot.' in ret1['response'] or 'can I assist you today?' in ret1[ 'response'] or 'a student at' in ret1['response'] or 'am a person who' in ret1['response'] or 'I am' in \ ret1['response'] or "I'm a student at" in ret1['response'] assert 'Birds' in ret2['response'] or 'Once upon a time' in ret2['response'] assert 'Birds' in ret3['response'] or 'Once upon a time' in ret3['response'] assert 'I am a bot.' in ret4['response'] or 'can I assist you today?' in ret4[ 'response'] or 'a student at' in ret4['response'] or 'am a person who' in ret4['response'] or 'I am' in \ ret4['response'] or "I'm a student at" in ret4['response'] assert 'I am a bot.' in ret5['response'] or 'can I assist you today?' in ret5[ 'response'] or 'a student at' in ret5['response'] or 'am a person who' in ret5['response'] or 'I am' in \ ret5['response'] or "I'm a student at" in ret5['response'] assert 'I am a bot.' in ret6['response'] or 'can I assist you today?' in ret6[ 'response'] or 'a student at' in ret6['response'] or 'am a person who' in ret6['response'] or 'I am' in \ ret6['response'] or "I'm a student at" in ret6['response'] assert 'I am a bot.' in ret7['response'] or 'can I assist you today?' in ret7[ 'response'] or 'a student at' in ret7['response'] or 'am a person who' in ret7['response'] or 'I am' in \ ret7['response'] or "I'm a student at" in ret7['response'] print("DONE", flush=True) def run_docker(inf_port, base_model, low_mem_mode=False, do_shared=True): datetime_str = str(datetime.now()).replace(" ", "_").replace(":", "_") msg = "Starting HF inference %s..." % datetime_str print(msg, flush=True) home_dir = os.path.expanduser('~') makedirs(os.path.join(home_dir, '.cache/huggingface/hub')) data_dir = '%s/.cache/huggingface/hub/' % home_dir n_gpus = get_ngpus_vis() cmd = ["docker"] + ['run', '-d', '--runtime', 'nvidia', ] + gpus_cmd() + [ '--shm-size', '1g', '-e', 'HUGGING_FACE_HUB_TOKEN=%s' % os.environ['HUGGING_FACE_HUB_TOKEN'], '-p', '%s:80' % inf_port, '-v', '%s/.cache/huggingface/hub/:/data' % home_dir, '-v', '%s:/data' % data_dir, 'ghcr.io/huggingface/text-generation-inference:0.9.3', '--model-id', base_model, '--max-stop-sequences', '6', '--sharded', 'false' if n_gpus == 1 or not do_shared else 'true' ] if n_gpus > 1 and do_shared: cmd.extend(['--num-shard', '%s' % n_gpus]) if low_mem_mode: cmd.extend(['--max-input-length', '1024', '--max-total-tokens', '2048', # '--cuda-memory-fraction', '0.3', # for 0.9.4, but too memory hungry ]) else: cmd.extend(['--max-input-length', '4096', '--max-total-tokens', '8192', # '--cuda-memory-fraction', '0.8', # for 0.9.4, but too memory hungry ]) print(cmd, flush=True) docker_hash = subprocess.check_output(cmd).decode().strip() import time connected = False while not connected: cmd = 'docker logs %s' % docker_hash o = subprocess.check_output(cmd, shell=True, timeout=15) connected = 'Connected' in o.decode("utf-8") time.sleep(5) print("Done starting TGI server: %s" % docker_hash, flush=True) return docker_hash def gpus_cmd(): n_gpus = get_ngpus_vis() if n_gpus == 1: return ['--gpus', 'device=%d' % int(os.getenv('CUDA_VISIBLE_DEVICES', '0'))] elif n_gpus > 2: # note below if joined loses ' needed return ['--gpus', '\"device=%s\"' % os.getenv('CUDA_VISIBLE_DEVICES', str(list(range(0, n_gpus))).replace(']', '').replace('[', '').replace( ' ', '') )] def run_vllm_docker(inf_port, base_model, tokenizer=None): if base_model == 'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2': # 7b has 71 heads, not divisible os.environ['CUDA_VISIBLE_DEVICES'] = '0' os.system("docker pull gcr.io/vorvan/h2oai/h2ogpt-runtime:0.1.0") datetime_str = str(datetime.now()).replace(" ", "_").replace(":", "_") msg = "Starting vLLM inference %s..." % datetime_str print(msg, flush=True) home_dir = os.path.expanduser('~') makedirs(os.path.join(home_dir, '.cache/huggingface/hub')) n_gpus = get_ngpus_vis() cmd = ["docker"] + ['run', '-d', '--runtime', 'nvidia', ] + gpus_cmd() + [ '--shm-size', '10.24g', '-e', 'HUGGING_FACE_HUB_TOKEN=%s' % os.environ['HUGGING_FACE_HUB_TOKEN'], '-p', '%s:5000' % inf_port, '--entrypoint', '/h2ogpt_conda/vllm_env/bin/python3.10', '-e', 'NCCL_IGNORE_DISABLED_P2P=1', '-v', '/etc/passwd:/etc/passwd:ro', '-v', '/etc/group:/etc/group:ro', '-u', '%s:%s' % (os.getuid(), os.getgid()), '-v', '%s/.cache:/workspace/.cache' % home_dir, # '--network', 'host', 'gcr.io/vorvan/h2oai/h2ogpt-runtime:0.1.0', # 'h2ogpt', # use when built locally with vLLM just freshly added # 'docker.io/library/h2ogpt', # use when built locally with vLLM just freshly added '-m', 'vllm.entrypoints.openai.api_server', '--port=5000', '--host=0.0.0.0', '--model=%s' % base_model, '--tensor-parallel-size=%s' % n_gpus, '--seed', '1234', '--trust-remote-code', '--download-dir=/workspace/.cache/huggingface/hub', ] os.environ.pop('CUDA_VISIBLE_DEVICES', None) if tokenizer: cmd.append('--tokenizer=%s' % tokenizer) print(cmd, flush=True) print(' '.join(cmd), flush=True) docker_hash = subprocess.check_output(cmd).decode().strip() import time connected = False while not connected: cmd = 'docker logs %s' % docker_hash o = subprocess.check_output(cmd, shell=True, timeout=15) connected = 'Uvicorn running on' in o.decode("utf-8") # somehow above message doesn't come up connected |= 'GPU blocks' in o.decode("utf-8") time.sleep(5) print("Done starting vLLM server: %s" % docker_hash, flush=True) return docker_hash def run_h2ogpt_docker(port, base_model, inference_server=None, max_new_tokens=None): os.system("docker pull gcr.io/vorvan/h2oai/h2ogpt-runtime:0.1.0") datetime_str = str(datetime.now()).replace(" ", "_").replace(":", "_") msg = "Starting h2oGPT %s..." % datetime_str print(msg, flush=True) home_dir = os.path.expanduser('~') makedirs(os.path.join(home_dir, '.cache/huggingface/hub')) makedirs(os.path.join(home_dir, 'save')) cmd = ["docker"] + ['run', '-d', '--runtime', 'nvidia', ] + gpus_cmd() + [ '--shm-size', '1g', '-p', '%s:7860' % port, '-v', '%s/.cache:/workspace/.cache/' % home_dir, '-v', '%s/save:/workspace/save' % home_dir, '-v', '/etc/passwd:/etc/passwd:ro', '-v', '/etc/group:/etc/group:ro', '-u', '%s:%s' % (os.getuid(), os.getgid()), '-e', 'HUGGING_FACE_HUB_TOKEN=%s' % os.environ['HUGGING_FACE_HUB_TOKEN'], '--network', 'host', 'gcr.io/vorvan/h2oai/h2ogpt-runtime:0.1.0', # 'h2ogpt', # use when built locally with vLLM just freshly added '/workspace/generate.py', '--base_model=%s' % base_model, '--use_safetensors=True', '--save_dir=/workspace/save/', '--score_model=None', '--max_max_new_tokens=%s' % (max_new_tokens or 2048), '--max_new_tokens=%s' % (max_new_tokens or 1024), '--num_async=10', '--num_beams=1', '--top_k_docs=-1', '--chat=True', '--stream_output=True', # '--debug=True', ] if inference_server: cmd.extend(['--inference_server=%s' % inference_server]) print(cmd, flush=True) docker_hash = subprocess.check_output(cmd).decode().strip() print("Done starting h2oGPT server: %s" % docker_hash, flush=True) return docker_hash @pytest.mark.parametrize("base_model", # FIXME: Can't get 6.9 or 12b (quantized or not) to work on home system, so do falcon only for now # ['h2oai/h2ogpt-oig-oasst1-512-6_9b', 'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2'] ['h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2'] ) @pytest.mark.parametrize("force_langchain_evaluate", [False, True]) @pytest.mark.parametrize("do_langchain", [False, True]) @pytest.mark.parametrize("pass_prompt_type", [False, True, 'custom']) @pytest.mark.parametrize("do_model_lock", [False, True]) @wrap_test_forked def test_hf_inference_server(base_model, force_langchain_evaluate, do_langchain, pass_prompt_type, do_model_lock, prompt='Who are you?', stream_output=False, max_new_tokens=256, langchain_mode='Disabled', langchain_action=LangChainAction.QUERY.value, langchain_agents=[], user_path=None, langchain_modes=['UserData', 'MyData', 'LLM', 'Disabled'], docs_ordering_type='reverse_sort'): # HF inference server gradio_port = get_inf_port() inf_port = gradio_port + 1 inference_server = 'http://127.0.0.1:%s' % inf_port docker_hash = run_docker(inf_port, base_model, low_mem_mode=True, do_shared=False) if force_langchain_evaluate: langchain_mode = 'MyData' if do_langchain: langchain_mode = 'UserData' from tests.utils import make_user_path_test user_path = make_user_path_test() # from src.gpt_langchain import get_some_dbs_from_hf # get_some_dbs_from_hf() if base_model in ['h2oai/h2ogpt-oig-oasst1-512-6_9b', 'h2oai/h2ogpt-oasst1-512-12b']: prompt_type = PromptType.human_bot.name else: prompt_type = PromptType.prompt_answer.name if isinstance(pass_prompt_type, str): prompt_type = 'custom' prompt_dict = """{'promptA': None, 'promptB': None, 'PreInstruct': None, 'PreInput': None, 'PreResponse': None, 'terminate_response': [], 'chat_sep': '', 'chat_turn_sep': '', 'humanstr': None, 'botstr': None, 'generates_leading_space': False}""" else: prompt_dict = None if not pass_prompt_type: prompt_type = None if do_model_lock: model_lock = [{'inference_server': inference_server, 'base_model': base_model}] base_model = None inference_server = None else: model_lock = None main_kwargs = dict(base_model=base_model, prompt_type=prompt_type, prompt_dict=prompt_dict, chat=True, system_prompt='', stream_output=stream_output, gradio=True, num_beams=1, block_gradio_exit=False, max_new_tokens=max_new_tokens, langchain_mode=langchain_mode, langchain_action=langchain_action, langchain_agents=langchain_agents, user_path=user_path, langchain_modes=langchain_modes, docs_ordering_type=docs_ordering_type, force_langchain_evaluate=force_langchain_evaluate, inference_server=inference_server, model_lock=model_lock) try: # server that consumes inference server from src.gen import main main(**main_kwargs) # client test to server that only consumes inference server from src.client_test import run_client_chat res_dict, client = run_client_chat(prompt=prompt, prompt_type=prompt_type, stream_output=stream_output, max_new_tokens=max_new_tokens, langchain_mode=langchain_mode, langchain_action=langchain_action, langchain_agents=langchain_agents, prompt_dict=prompt_dict) assert res_dict['prompt'] == prompt assert res_dict['iinput'] == '' # will use HOST from above ret1, ret2, ret3, ret4, ret5, ret6, ret7 = run_client_many(prompt_type=None) # client shouldn't have to specify # here docker started with falcon before personalization if isinstance(pass_prompt_type, str): assert 'year old student from the' in ret1['response'] or 'I am a person who is asking you a question' in \ ret1['response'] or 'year old' in ret1['response'] assert 'bird' in ret2['response'] assert 'bird' in ret3['response'] assert 'year old student from the' in ret4['response'] or 'I am a person who is asking you a question' in \ ret4['response'] or 'year old' in ret4['response'] assert 'year old student from the' in ret5['response'] or 'I am a person who is asking you a question' in \ ret5['response'] or 'year old' in ret5['response'] assert 'year old student from the' in ret6['response'] or 'I am a person who is asking you a question' in \ ret6['response'] or 'year old' in ret6['response'] assert 'year old student from the' in ret7['response'] or 'I am a person who is asking you a question' in \ ret7['response'] or 'year old' in ret7['response'] elif base_model == 'h2oai/h2ogpt-oig-oasst1-512-6_9b': assert 'h2oGPT' in ret1['response'] assert 'Birds' in ret2['response'] assert 'Birds' in ret3['response'] assert 'h2oGPT' in ret4['response'] assert 'h2oGPT' in ret5['response'] assert 'h2oGPT' in ret6['response'] assert 'h2oGPT' in ret7['response'] else: assert 'I am a language model trained' in ret1['response'] or 'I am a helpful assistant' in \ ret1['response'] or 'a chat-based assistant' in ret1['response'] or 'am a student' in ret1[ 'response'] or 'I am an AI language model' in ret1['response'] assert 'Once upon a time' in ret2['response'] assert 'Once upon a time' in ret3['response'] assert 'I am a language model trained' in ret4['response'] or 'I am a helpful assistant' in \ ret4['response'] or 'a chat-based assistant' in ret4['response'] or 'am a student' in ret4[ 'response'] or 'I am an AI language model' in ret4['response'] assert 'I am a language model trained' in ret5['response'] or 'I am a helpful assistant' in \ ret5['response'] or 'a chat-based assistant' in ret5['response'] or 'am a student' in ret5[ 'response'] or 'I am an AI language model' in ret5['response'] assert 'I am a language model trained' in ret6['response'] or 'I am a helpful assistant' in \ ret6['response'] or 'a chat-based assistant' in ret6['response'] or 'am a student' in ret6[ 'response'] or 'I am an AI language model' in ret6['response'] assert 'I am a language model trained' in ret7['response'] or 'I am a helpful assistant' in \ ret7['response'] or 'a chat-based assistant' in ret7['response'] or 'am a student' in ret7[ 'response'] or 'I am an AI language model' in ret7['response'] print("DONE", flush=True) finally: os.system("docker stop %s" % docker_hash) chat_conversation1 = [['Who are you?', 'I am an AI language model created by OpenAI, designed to assist with various tasks such as answering questions, generating text, and providing information.']] @pytest.mark.skipif(not have_openai_key, reason="requires OpenAI key to run") @pytest.mark.parametrize("system_prompt", ['You are a baby cat who likes to talk to people.', '']) @pytest.mark.parametrize("chat_conversation", [chat_conversation1, []]) @pytest.mark.parametrize("force_langchain_evaluate", [False, True]) @pytest.mark.parametrize("inference_server", ['openai_chat', 'openai_azure_chat']) @wrap_test_forked def test_openai_inference_server(inference_server, force_langchain_evaluate, chat_conversation, system_prompt, prompt='Who are you?', stream_output=False, max_new_tokens=256, base_model='gpt-3.5-turbo', langchain_mode='Disabled', langchain_action=LangChainAction.QUERY.value, langchain_agents=[], user_path=None, langchain_modes=['UserData', 'MyData', 'LLM', 'Disabled'], docs_ordering_type='reverse_sort'): if force_langchain_evaluate: langchain_mode = 'MyData' if inference_server == 'openai_azure_chat': # need at least deployment name added: deployment_name = 'h2ogpt' inference_server += ':%s:%s' % (deployment_name, 'h2ogpt.openai.azure.com/') if 'azure' in inference_server: assert 'OPENAI_AZURE_KEY' in os.environ, "Missing 'OPENAI_AZURE_KEY'" os.environ['OPENAI_API_KEY'] = os.environ['OPENAI_AZURE_KEY'] main_kwargs = dict(base_model=base_model, chat=True, stream_output=stream_output, gradio=True, num_beams=1, block_gradio_exit=False, max_new_tokens=max_new_tokens, langchain_mode=langchain_mode, langchain_action=langchain_action, langchain_agents=langchain_agents, user_path=user_path, langchain_modes=langchain_modes, system_prompt='auto', docs_ordering_type=docs_ordering_type, # chat_conversation=chat_conversation # not enough if API passes [], API will override ) # server that consumes inference server from src.gen import main main(**main_kwargs, inference_server=inference_server) if chat_conversation: prompt = 'What did I ask?' # client test to server that only consumes inference server from src.client_test import run_client_chat res_dict, client = run_client_chat(prompt=prompt, prompt_type='openai_chat', stream_output=stream_output, max_new_tokens=max_new_tokens, langchain_mode=langchain_mode, langchain_action=langchain_action, langchain_agents=langchain_agents, chat_conversation=chat_conversation, system_prompt=system_prompt) assert res_dict['prompt'] == prompt assert res_dict['iinput'] == '' if chat_conversation and system_prompt: # TODO: don't check yet, system_prompt ignored if response from LLM is as if no system prompt return if chat_conversation or system_prompt: ret6, _ = test_client_basic_api_lean(prompt=prompt, prompt_type=None, chat_conversation=chat_conversation, system_prompt=system_prompt) if system_prompt: assert 'baby cat' in res_dict['response'] and 'meow' in res_dict['response'].lower() assert 'baby cat' in ret6['response'] and 'meow' in ret6['response'].lower() else: options_response = ['You asked "Who are you?"', """You asked, \"Who are you?\""""] assert res_dict['response'] in options_response assert ret6['response'] in options_response return if system_prompt: # don't test rest, too many cases return # will use HOST from above ret1, ret2, ret3, ret4, ret5, ret6, ret7 = run_client_many(prompt_type=None) # client shouldn't have to specify assert 'I am an AI language model' in ret1['response'] or 'I am a helpful assistant designed' in ret1[ 'response'] or 'I am an AI assistant designed to help answer questions and provide information' in ret1[ 'response'] assert 'Once upon a time, in a far-off land,' in ret2['response'] or 'Once upon a time' in ret2['response'] assert 'Once upon a time, in a far-off land,' in ret3['response'] or 'Once upon a time' in ret3['response'] assert 'I am an AI language model' in ret4['response'] or 'I am a helpful assistant designed' in ret4[ 'response'] or 'I am an AI assistant designed to help answer questions and provide information' in ret4[ 'response'] assert 'I am an AI language model' in ret5['response'] or 'I am a helpful assistant designed' in ret5[ 'response'] or 'I am an AI assistant designed to help answer questions and provide information' in ret5[ 'response'] assert 'I am an AI language model' in ret6['response'] or 'I am a helpful assistant designed' in ret6[ 'response'] or 'I am an AI assistant designed to help answer questions and provide information' in ret6[ 'response'] assert 'I am an AI language model' in ret7['response'] or 'I am a helpful assistant designed' in ret7[ 'response'] or 'I am an AI assistant designed to help answer questions and provide information' in ret7[ 'response'] print("DONE", flush=True) @pytest.mark.parametrize("base_model", ['h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2', 'meta-llama/Llama-2-7b-chat-hf'] ) @wrap_test_forked def test_gradio_tgi_docker(base_model): # HF inference server gradio_port = get_inf_port() inf_port = gradio_port + 1 inference_server = 'http://127.0.0.1:%s' % inf_port docker_hash1 = run_docker(inf_port, base_model, low_mem_mode=True, do_shared=False) os.system('docker logs %s | tail -10' % docker_hash1) # h2oGPT server docker_hash2 = run_h2ogpt_docker(gradio_port, base_model, inference_server=inference_server) time.sleep(30) # assumes image already downloaded, else need more time os.system('docker logs %s | tail -10' % docker_hash2) # test this version for now, until docker updated version = 1 try: # client test to server that only consumes inference server prompt = 'Who are you?' print("Starting client tests with prompt: %s using %s" % (prompt, get_inf_server())) from src.client_test import run_client_chat res_dict, client = run_client_chat(prompt=prompt, stream_output=True, max_new_tokens=256, langchain_mode='Disabled', langchain_action=LangChainAction.QUERY.value, langchain_agents=[], version=version) assert res_dict['prompt'] == prompt assert res_dict['iinput'] == '' # will use HOST from above # client shouldn't have to specify ret1, ret2, ret3, ret4, ret5, ret6, ret7 = run_client_many(prompt_type=None, version=version) if 'llama' in base_model.lower(): who = "I'm LLaMA, an AI assistant developed by Meta AI" assert who in ret1['response'] assert who in ret1['response'] assert 'Once upon a time' in ret2['response'] assert 'Once upon a time' in ret3['response'] assert who in ret4['response'] assert who in ret5['response'] assert who in ret6['response'] assert who in ret7['response'] else: who = 'I am an AI language model' assert who in ret1['response'] assert 'Once upon a time' in ret2['response'] assert 'Once upon a time' in ret3['response'] assert who in ret4['response'] assert who in ret5['response'] assert who in ret6['response'] assert who in ret7['response'] print("DONE", flush=True) finally: os.system("docker stop %s" % docker_hash1) os.system("docker stop %s" % docker_hash2) @pytest.mark.parametrize("base_model", [ 'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2', 'h2oai/h2ogpt-4096-llama2-7b-chat'] # avoid meta to avoid hassle of key ) @wrap_test_forked def test_gradio_vllm_docker(base_model): # HF inference server gradio_port = get_inf_port() inf_port = gradio_port + 1 inference_server = 'vllm:127.0.0.1:%s' % inf_port if 'llama' in base_model: tokenizer = 'hf-internal-testing/llama-tokenizer' else: tokenizer = None docker_hash1 = run_vllm_docker(inf_port, base_model, tokenizer) os.system('docker logs %s | tail -10' % docker_hash1) # h2oGPT server docker_hash2 = run_h2ogpt_docker(gradio_port, base_model, inference_server=inference_server) time.sleep(30) # assumes image already downloaded, else need more time os.system('docker logs %s | tail -10' % docker_hash2) # test this version for now, until docker updated version = 1 try: # client test to server that only consumes inference server prompt = 'Who are you?' print("Starting client tests with prompt: %s using %s" % (prompt, get_inf_server())) from src.client_test import run_client_chat res_dict, client = run_client_chat(prompt=prompt, stream_output=True, max_new_tokens=256, langchain_mode='Disabled', langchain_action=LangChainAction.QUERY.value, langchain_agents=[], version=version) assert res_dict['prompt'] == prompt assert res_dict['iinput'] == '' # will use HOST from above # client shouldn't have to specify ret1, ret2, ret3, ret4, ret5, ret6, ret7 = run_client_many(prompt_type=None, version=version) if 'llama' in base_model.lower(): who = "I'm LLaMA, an AI assistant developed by Meta AI" assert who in ret1['response'] assert who in ret1['response'] assert 'Once upon a time' in ret2['response'] assert 'Once upon a time' in ret3['response'] assert who in ret4['response'] assert who in ret5['response'] assert who in ret6['response'] assert who in ret7['response'] else: who = 'I am an AI language model' assert who in ret1['response'] assert 'Once upon a time' in ret2['response'] assert 'Once upon a time' in ret3['response'] assert who in ret4['response'] assert who in ret5['response'] assert who in ret6['response'] assert who in ret7['response'] print("DONE", flush=True) finally: os.system("docker stop %s" % docker_hash1) os.system("docker stop %s" % docker_hash2) @pytest.mark.skipif(not have_replicate_key, reason="requires Replicate key to run") @pytest.mark.parametrize("system_prompt", ['You are a baby cat who likes to talk to people.', '']) @pytest.mark.parametrize("chat_conversation", [chat_conversation1, []]) @pytest.mark.parametrize("force_langchain_evaluate", [False, True]) @wrap_test_forked def test_replicate_inference_server(force_langchain_evaluate, chat_conversation, system_prompt, prompt='Who are you?', stream_output=False, max_new_tokens=128, # limit cost base_model='h2oai/h2ogpt-4096-llama2-7b-chat', langchain_mode='Disabled', langchain_action=LangChainAction.QUERY.value, langchain_agents=[], user_path=None, langchain_modes=['UserData', 'MyData', 'LLM', 'Disabled'], docs_ordering_type='reverse_sort'): if force_langchain_evaluate: langchain_mode = 'MyData' main_kwargs = dict(base_model=base_model, chat=True, stream_output=stream_output, gradio=True, num_beams=1, block_gradio_exit=False, max_new_tokens=max_new_tokens, langchain_mode=langchain_mode, langchain_action=langchain_action, langchain_agents=langchain_agents, user_path=user_path, langchain_modes=langchain_modes, docs_ordering_type=docs_ordering_type) # server that consumes inference server from src.gen import main # https://replicate.com/lucataco/llama-2-7b-chat #model_string = "lucataco/llama-2-7b-chat:6ab580ab4eef2c2b440f2441ec0fc0ace5470edaf2cbea50b8550aec0b3fbd38" model_string = "meta/llama-2-7b-chat:8e6975e5ed6174911a6ff3d60540dfd4844201974602551e10e9e87ab143d81e" main(**main_kwargs, inference_server='replicate:%s' % model_string) if chat_conversation: prompt = 'What did I ask?' # client test to server that only consumes inference server from src.client_test import run_client_chat res_dict, client = run_client_chat(prompt=prompt, prompt_type='llama2', stream_output=stream_output, max_new_tokens=max_new_tokens, langchain_mode=langchain_mode, langchain_action=langchain_action, langchain_agents=langchain_agents, chat_conversation=chat_conversation, system_prompt=system_prompt) assert res_dict['prompt'] == prompt assert res_dict['iinput'] == '' if chat_conversation and system_prompt: # TODO: don't check yet, system_prompt ignored if response from LLM is as if no system prompt return if chat_conversation or system_prompt: ret6, _ = test_client_basic_api_lean(prompt=prompt, prompt_type=None, chat_conversation=chat_conversation, system_prompt=system_prompt) if system_prompt: assert 'baby cat' in res_dict['response'] and 'meow' in res_dict['response'].lower() assert 'baby cat' in ret6['response'] and 'meow' in ret6['response'].lower() else: options_response = ['You asked "Who are you?"', """You asked, \"Who are you?\"""", """You asked: \"Who are you?\"""", ] assert res_dict['response'] in options_response assert ret6['response'] in options_response return if system_prompt: # don't test rest, too many cases return # will use HOST from above ret1, ret2, ret3, ret4, ret5, ret6, ret7 = run_client_many(prompt_type=None) # client shouldn't have to specify who = 'an AI assistant' who2 = 'just an AI' assert who in ret1['response'] or who2 in ret1['response'] assert 'Once upon a time, in a far-off land,' in ret2['response'] or 'Once upon a time' in ret2['response'] assert 'Once upon a time, in a far-off land,' in ret3['response'] or 'Once upon a time' in ret3['response'] assert who in ret4['response'] or 'I am a helpful assistant designed' in ret4['response'] or who2 in ret4['response'] assert who in ret5['response'] or 'I am a helpful assistant designed' in ret5['response'] or who2 in ret5['response'] assert who in ret6['response'] or 'I am a helpful assistant designed' in ret6['response'] or who2 in ret6['response'] assert who in ret7['response'] or 'I am a helpful assistant designed' in ret7['response'] or who2 in ret7['response'] print("DONE", flush=True)