Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,047 Bytes
46a13bb d46878a b022d45 d46878a 46a13bb d46878a 6617373 781eee5 46a13bb 1cf3a02 46a13bb 912f740 46a13bb 781eee5 46a13bb 276a8f8 9606bd9 d46878a 530c8fb 2f382a0 46a13bb 912f740 d33d1ff cab16f9 e5f0735 b022d45 aeabe15 2f382a0 46a13bb 781eee5 aeabe15 46a13bb d46878a aeabe15 14277b2 2f382a0 37449d4 2f382a0 9606bd9 2f382a0 37449d4 2f382a0 711dd89 2f382a0 781eee5 aeabe15 2f382a0 aeabe15 2f382a0 aeabe15 2f382a0 781eee5 912f740 2f382a0 912f740 14277b2 149c109 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import gradio as gr
from dotenv import load_dotenv
from utils import get_evaluated_component, get_evaluated_component_adjective, get_result_description, to_title_case, get_prompt_from_test_case, to_snake_case
load_dotenv()
import json
from model import generate_text
from logger import logger
import os
from gradio_modal import Modal
catalog = {}
with open('catalog.json') as f:
logger.debug('Loading catalog from json.')
catalog = json.load(f)
def update_selected_test_case(button_name, state: gr.State, event: gr.EventData):
target_sub_catalog_name, target_test_case_name = event.target.elem_id.split('---')
state['selected_sub_catalog'] = target_sub_catalog_name
state['selected_criteria_name'] = target_test_case_name
state['selected_test_case'] = [t for sub_catalog_name, sub_catalog in catalog.items() for t in sub_catalog if t['name'] == to_snake_case(button_name) and to_snake_case(sub_catalog_name) == target_sub_catalog_name][0]
return state
def on_test_case_click(state: gr.State):
selected_sub_catalog = state['selected_sub_catalog']
selected_criteria_name = state['selected_criteria_name']
selected_test_case = state['selected_test_case']
logger.debug(f'Changing to test case "{selected_criteria_name}" from catalog "{selected_sub_catalog}".')
return {
test_case_name: f'<h2>{to_title_case(selected_test_case["name"])}</h2>',
criteria: selected_test_case['criteria'],
context: gr.update(value=selected_test_case['context'], visible=True) if selected_test_case['context'] is not None else gr.update(visible=False, value=''),
user_message: gr.update(value=selected_test_case['user_message'], interactive=True, elem_classes=['input-box']) if selected_sub_catalog != 'harmful_content_in_assistant_response' else gr.update(value=selected_test_case['user_message'], interactive=False, elem_classes=['read-only', 'input-box']),
assistant_message: gr.update(value=selected_test_case['assistant_message'], visible=True) if selected_test_case['assistant_message'] is not None else gr.update(visible=False, value=''),
result_text: gr.update(value='', visible=False),
result_container: gr.update(visible=False),
evaluation_results_label: gr.update(visible=False)
}
def change_button_color(event: gr.EventData):
return [gr.update(elem_classes=['catalog-button', 'selected']) if v.elem_id == event.target.elem_id else gr.update(elem_classes=['catalog-button']) for c in catalog_buttons.values() for v in c.values()]
def on_submit(criteria, context, user_message, assistant_message, state):
prompt = get_prompt_from_test_case({
'name': state['selected_criteria_name'],
'criteria': criteria,
'context': context,
'user_message': user_message,
'assistant_message': assistant_message,
}, state['selected_sub_catalog'])
logger.debug(f"Starting evaluation for subcatelog {state['selected_sub_catalog']} and criteria name {state['selected_criteria_name']}")
result_label = generate_text(prompt)['assessment'] # Yes or No
# result_str = f"Is the {evaluated_component} message harmful based on the risk definition: {result_label}"
html_str = f"<p>{get_result_description(state['selected_sub_catalog'], state['selected_criteria_name'])} <strong>{result_label}</strong></p>"
# html_str = f"Is the {evaluated_component} {evaluated_component_adjective}: {result_label}"
return [gr.update(value=html_str), gr.update(visible=True), gr.update(visible=True)]
def on_show_prompt_click(criteria, context, user_message, assistant_message, state):
prompt = get_prompt_from_test_case({
'name': state['selected_criteria_name'],
'criteria': criteria,
'context': context,
'user_message': user_message,
'assistant_message': assistant_message,
}, state['selected_sub_catalog'])
prompt['content'] = prompt['content'].replace('<', '<').replace('>', '>').replace('\n', '<br>')
prompt = json.dumps(prompt, indent=4)
return gr.Markdown(prompt)
ibm_blue = blue = gr.themes.Color(
name="ibm-blue",
c50="#eff6ff",
c100="#dbeafe",
c200="#bfdbfe",
c300="#93c5fd",
c400="#60a5fa",
c500="#0F62FE",
c600="#2563eb",
c700="#1d4ed8",
c800="#1e40af",
c900="#1e3a8a",
c950="#1d3660"
)
with gr.Blocks(
title='Granite Guardian',
theme=gr.themes.Soft(
primary_hue=ibm_blue,
font=[gr.themes.GoogleFont("IBM Plex Sans"), gr.themes.GoogleFont('Source Sans 3')]),
css='styles.css') as demo:
with gr.Blocks(elem_classes="roott"):
state = gr.State(value={
'selected_sub_catalog': 'harmful_content_in_user_prompt',
'selected_criteria_name': 'general_harm'
})
starting_test_case = [t for sub_catalog_name, sub_catalog in catalog.items() for t in sub_catalog if t['name'] == state.value['selected_criteria_name'] and sub_catalog_name == state.value['selected_sub_catalog']][0]
with gr.Row(elem_classes='title-row'):
with gr.Column(scale=4):
gr.HTML('<h2>IBM Granite Guardian 3.0</h2>', elem_classes='title')
gr.HTML(elem_classes='system-description', value='<p>Granite Guardian models are specialized language models in the Granite family that allow you to detect harms and risks in generative AI systems. The Granite Guardian models can be used with any other large language models to make interactions with generative AI systems safe. Select an example in the left panel to see how the model evaluates harms and risks in user prompts, assistant responses, and for hallucinations in retrieval-augmented generation. In this demo, we use granite-guardian-3.0-8B.</p>')
with gr.Row(elem_classes='column-gap'):
with gr.Column(scale=0, elem_classes='no-gap'):
title_display_left = gr.HTML("<h2>Harms & Risks</h2>", elem_classes=['subtitle', 'subtitle-harms'])
accordions = []
catalog_buttons: dict[str,dict[str,gr.Button]] = {}
for i, (sub_catalog_name, sub_catalog) in enumerate(catalog.items()):
with gr.Accordion(to_title_case(sub_catalog_name), open=(i==0), elem_classes='accordion') as accordion:
for test_case in sub_catalog:
elem_classes=['catalog-button']
elem_id=f"{sub_catalog_name}---{test_case['name']}"
if starting_test_case == test_case:
elem_classes.append('selected')
if not sub_catalog_name in catalog_buttons:
catalog_buttons[sub_catalog_name] = {}
catalog_buttons[sub_catalog_name][test_case['name']] = \
gr.Button(to_title_case(test_case['name']), elem_classes=elem_classes, variant='secondary', size='sm', elem_id=elem_id)
accordions.append(accordion)
with gr.Column(visible=True, scale=1) as test_case_content:
with gr.Row():
test_case_name = gr.HTML(f'<h2>{to_title_case(starting_test_case["name"])}</h2>', elem_classes='subtitle')
show_propt_button = gr.Button('Show prompt', size='sm', scale=0, min_width=110)
criteria = gr.Textbox(label="Evaluation Criteria", lines=3, interactive=False, value=starting_test_case['criteria'], elem_classes=['read-only', 'input-box', 'margin-bottom'])
gr.HTML(elem_classes=['block', 'content-gap'])
context = gr.Textbox(label="Context", lines=3, interactive=True, value=starting_test_case['context'], visible=False, elem_classes=['input-box'])
user_message = gr.Textbox(label="User Prompt", lines=3, interactive=True, value=starting_test_case['user_message'], elem_classes=['input-box'])
assistant_message = gr.Textbox(label="Assistant Response", lines=3, interactive=True, visible=False, value=starting_test_case['assistant_message'], elem_classes=['input-box'])
submit_button = gr.Button("Evaluate", variant='primary',icon=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'send-white.png'), elem_classes='submit-button')
with gr.Column(elem_classes="result-container", visible=False) as result_container:
evaluation_results_label = gr.HTML("<span>Results</span>", elem_classes='result-title', visible=False)
result_text = gr.HTML(label="Result", elem_classes=['result-text', 'input-box', 'read-only', 'block'], visible=False, value='')
with Modal(visible=False, elem_classes='modal') as modal:
prompt = gr.Markdown('')
show_propt_button.click(
on_show_prompt_click,
inputs=[criteria, context, user_message, assistant_message, state],
outputs=prompt
).then(lambda: gr.update(visible=True), None, modal)
submit_button \
.click(
lambda: [gr.update(visible=True), gr.update(visible=True)],
inputs=None,
outputs=[result_container, result_text]) \
.then(
on_submit,
inputs=[criteria, context, user_message, assistant_message, state],
outputs=[result_text, evaluation_results_label, result_container])
for button in [t for sub_catalog_name, sub_catalog_buttons in catalog_buttons.items() for t in sub_catalog_buttons.values()]:
button.click(update_selected_test_case, inputs=[button, state], outputs=[state])\
.then(on_test_case_click, inputs=state, outputs={test_case_name, criteria, context, user_message, assistant_message, result_text, result_container, evaluation_results_label}) \
.then(change_button_color, None, [v for c in catalog_buttons.values() for v in c.values()])
demo.launch(server_name='0.0.0.0')
|